首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2004年   3篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1989年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
Caldesmon is a component of the thin filaments of smooth muscles where it is believed to play an essential role in regulating the thin filaments’ interaction with myosin and hence contractility. We studied the effects of caldesmon and two recombinant fragments CaDH1 (residues 506–793) and CaDH2 (residues 683–767) on the structure of actin–tropomyosin by making measurements of the fluorescence polarisation of probes specifically attached to actin. CaDH1, like the parent molecule caldesmon, is an inhibitor of actin–tropomyosin interaction with myosin whilst CaDH2 is an activator. The F-actin in permeabilised and myosin free rabbit skeletal muscle ‘ghost’ fibres was labelled by tetramethyl rhodamine-isothiocyanate (TRITC)–phalloidin or fluorescein-5′-isothiocyanate (FITC) at lysine 61. Fluorescence polarisation measurements were made and the parameters ΦA, ΦE, Θ1/2 and N were calculated. ΦA and ΦE are angles between the fiber axis and the absorption and emission dipoles, respectively; Θ1/2 is the angle between the F-actin filament axis and the fiber axis; N is the relative number of randomly oriented fluorophores. Actin–tropomyosin interaction with myosin subfragment-1 induced changes in the parameters of the polarised fluorescence that are typical of strong binding of myosin to actin and of the ‘on’ conformational state of actin. Caldesmon and CaDH1 (as well as troponin in the absence of Ca2+) diminished the effect of S-1, whereas CaDH2 (as well as troponin in the presence of Ca2+) enhanced the effect of S1. Thus the structural evidence correlates with biochemical evidence that C-terminal actin-binding sites of caldesmon can modulate the structural transition of actin monomers between ‘off’ (caldesmon and CaDH1) and ‘on’ (S-1 and CaDH2) states in a manner analogous to troponin.  相似文献   
2.

Background  

Choriocarcinoma is an aggressive neoplasm arising in the body of the uterus. The disease normally spreads to lung and brain.  相似文献   
3.
Phosphorylation of troponin I by protein kinase A (PKA) reduces Ca2+ sensitivity and increases the rate of Ca2+ release from troponin C and the rate of relaxation in cardiac muscle. In vitro experiments indicate that mutations that cause dilated cardiomyopathy (DCM) uncouple this modulation, but this has not been demonstrated in an intact contractile system. Using a Ca2+-jump protocol, we measured the effect of the DCM-causing mutation ACTC E361G on the equilibrium and kinetic parameters of Ca2+ regulation of contractility in single transgenic mouse heart myofibrils. We used propranolol treatment of mice to reduce the level of troponin I and myosin binding protein C (MyBP-C) phosphorylation in their hearts before isolating the myofibrils. In nontransgenic mouse myofibrils, the Ca2+ sensitivity of force was increased, the fast relaxation phase rate constant, kREL, was reduced, and the length of the slow linear phase, tLIN, was increased when the troponin I phosphorylation level was reduced from 1.02 to 0.3 molPi/TnI (EC50 P/unP = 1.8 ± 0.2, p < 0.001). Native myofibrils from ACTC E361G transgenic mice had a 2.4-fold higher Ca2+ sensitivity than nontransgenic mouse myofibrils. Strikingly, the Ca2+ sensitivity and relaxation parameters of ACTC E361G myofibrils did not depend on the troponin I phosphorylation level (EC50 P/unP = 0.88 ± 0.17, p = 0.39). Nevertheless, modulation of the Ca2+ sensitivity of ACTC E361G myofibrils by sarcomere length or EMD57033 was indistinguishable from that of nontransgenic myofibrils. Overall, EC50 measured in different conditions varied over a 7-fold range. The time course of relaxation, as defined by tLIN and kREL, was correlated with EC50 but varied by just 2.7- and 3.3-fold, respectively. Our results confirm that troponin I phosphorylation specifically alters the Ca2+ sensitivity of isometric tension and the time course of relaxation in cardiac muscle myofibrils. Moreover, the DCM-causing mutation ACTC E361G blunts this phosphorylation-dependent response without affecting other parameters of contraction, including length-dependent activation and the response to EMD57033.  相似文献   
4.

Introduction  

Development of cell therapies for repairing the intervertebral disc is limited by the lack of a source of healthy human disc cells. Stem cells, particularly mesenchymal stem cells, are seen as a potential source but differentiation strategies are limited by the lack of specific markers that can distinguish disc cells from articular chondrocytes.  相似文献   
5.
6.

Objective

Patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) have diffuse subtle gray matter (GM) atrophy detectable by MRI quantification analyses. However, it is not clear whether the etiology and seizure frequency are associated with this atrophy. We aimed to evaluate the occurrence of GM atrophy and the influence of seizure frequency in patients with TLE and either normal MRI (TLE-NL) or MRI signs of HS (TLE-HS).

Methods

We evaluated a group of 172 consecutive patients with unilateral TLE-HS or TLE-NL as defined by hippocampal volumetry and signal quantification (122 TLE-HS and 50 TLE-NL) plus a group of 82 healthy individuals. Voxel-based morphometry was performed with VBM8/SPM8 in 3T MRIs. Patients with up to three complex partial seizures and no generalized tonic-clonic seizures in the previous year were considered to have infrequent seizures. Those who did not fulfill these criteria were considered to have frequent seizures.

Results

Patients with TLE-HS had more pronounced GM atrophy, including the ipsilateral mesial temporal structures, temporal lobe, bilateral thalami and pre/post-central gyri. Patients with TLE-NL had more subtle GM atrophy, including the ipsilateral orbitofrontal cortex, bilateral thalami and pre/post-central gyri. Both TLE-HS and TLE-NL showed increased GM volume in the contralateral pons. TLE-HS patients with frequent seizures had more pronounced GM atrophy in extra-temporal regions than TLE-HS with infrequent seizures. Patients with TLE-NL and infrequent seizures had no detectable GM atrophy. In both TLE-HS and TLE-NL, the duration of epilepsy correlated with GM atrophy in extra-hippocampal regions.

Conclusion

Although a diffuse network GM atrophy occurs in both TLE-HS and TLE-NL, this is strikingly more evident in TLE-HS and in patients with frequent seizures. These findings suggest that neocortical atrophy in TLE is related to the ongoing seizures and epilepsy duration, while thalamic atrophy is more probably related to the original epileptogenic process.  相似文献   
7.
8.
9.
10.
We developed a broad-ranging method for identifying key hydrogen-producing and consuming microorganisms through analysis of hydrogenase gene content and expression in complex anaerobic microbial communities. The method is based on a tiling hydrogenase gene oligonucleotide DNA microarray (Hydrogenase Chip), which implements a high number of probes per gene by tiling probe sequences across genes of interest at 1.67 × –2 × coverage. This design favors the avoidance of false positive gene identification in samples of DNA or RNA extracted from complex microbial communities. We applied this technique to interrogate interspecies hydrogen transfer in complex communities in (i) lab-scale reductive dehalogenating microcosms enabling us to delineate key H2-consuming microorganisms, and (ii) hydrogen-generating microbial mats where we found evidence for significant H2 production by cyanobacteria. Independent quantitative PCR analysis on selected hydrogenase genes showed that this Hydrogenase Chip technique is semiquantitative. We also determined that as microbial community complexity increases, specificity must be traded for sensitivity in analyzing data from tiling DNA microarrays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号