首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1040篇
  免费   65篇
  2024年   2篇
  2023年   17篇
  2022年   31篇
  2021年   40篇
  2020年   34篇
  2019年   33篇
  2018年   49篇
  2017年   39篇
  2016年   50篇
  2015年   63篇
  2014年   50篇
  2013年   79篇
  2012年   90篇
  2011年   100篇
  2010年   57篇
  2009年   33篇
  2008年   49篇
  2007年   37篇
  2006年   37篇
  2005年   33篇
  2004年   39篇
  2003年   9篇
  2002年   26篇
  2001年   12篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   12篇
  1994年   4篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有1105条查询结果,搜索用时 358 毫秒
1.
In order to discriminate between the ionic and osmotic components of salt stress, sugarcane (Saccharum officinarum L. cv. Co 86032) calli were cultured on media containing NaCl or polyethylene glycol (PEG) 8000 that exerted the same osmotic pressure (−0.7 MPa). PEG stress exposure for 15 days led to significant growth reduction and loss in water content than salt stressed and control tissues. Osmotic adjustment (OA) was observed in callus tissues grown on salt, but was not evident in callus grown on PEG. Oxidative damage to membranes, estimated in terms of accumulation of thiobarbituric acid reactive substances-TBARS and electrolytic leakage was significantly higher in both the stressed calli than the control however, the extent of damage was more in the PEG stressed calli. The stressed callus tissues showed inhibition of ascorbate peroxidase activity, while catalase activity was increased. These results indicate sensitivity of cells to PEG-mediated stress than salt stress and differences in their OA to these two stress conditions. The sensitivity to the osmotic stress indicate that expression of the stress tolerance response requires the coordinated action of different tissues in a plant and hence was not expressed at the cellular level.  相似文献   
2.
Summary Low molecular weight iron-binding compounds are produced by the brown-rot fungus Gloeophyllum trabeum. These chelators may function in scavenging transition metals for fungal metabolism and extracellular enzyme production. Because of the low molecular mass of the chelate-metal complex (below 1000 Da), and the oxidizing potential of the bound transition metals, certain chelating compounds could also play a role in the early stages of cellulose depolymerization by brown-rot fungi. High-affinity iron-binding compounds were isolated and partially purified from both liquid cultures of the brown-rot Gloeophyllum trabeum and from infected wood. Chelating compounds purified by thin-layer chromatography were used to prepare specific antibodies. These antibodies were shown to detect the chelator in infected wood and liquid fungal cultures by enzyme-linked immunosorbent assay and could be used in immunotransmission electron microscopy to visualize the high-affinity iron-binding compounds in situ. Elucidating the physiological roles of fungal chelate-metal complexes and determining their function in lignocellulose depolymerization will help us to better understand the mechanism of wood biodegradation.Publication no. 1549 Maine Agricultural Experiment Station Offprint requests to: J. Jellison  相似文献   
3.
4.
Summary The dry-matter yield and nitrogen uptake of berseem (Trifolium alexand-drinum), yield, nitrogen uptake, nodulation and leghaemoglobin content of dhaincha (Sesbania aculeata) inoculated with specific rhizobia were appreciably influenced by the application of sodium humate to soil under green house conditions. Even the application of sodium humate alone without bacterial inoculation had good growth stimulating influence on both the crops, and this effect was further improved by the application of inorganic nitrogen to dhaincha plants. A fair increase in the yield and phosphorus up-take of wheat (Triticum vulgare) inoculated withAzotobacter and/orBacillus spp. was also recorded with the addition of the humic material to the soil. The greatest effect was observed on the plants inoculated withAzotobacter andBacillus spp. together.  相似文献   
5.
6.
7.

Arsenic (As) contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world. Therefore, the present study was designed to investigate the individual as well as the combined effects of exogenous silicon (Si) and sodium nitroprusside (SNP), a nitric oxide (NO) donor, on plant growth, metabolites, and antioxidant defense systems of radish (Raphanus sativus L.) plants under three different concentrations of As stress, i.e., 0.3, 0.5, and 0.7 mM in a pot experiment. The results showed that As stress reduced the growth parameters of radish plants by increasing the level of oxidative stress markers, i.e., malondialdehyde and hydrogen peroxide. However, foliar application of Si (2 mM) and pretreatment with SNP (100 µM) alone as well as in combination with Si improved the plant growth parameters, i.e., root length, fresh and dry weight of plants under As stress. Furthermore, As stress also reduced protein, and metabolites contents (flavonoids, phenolic and anthocyanin). Activities of antioxidative enzymes such as catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD), and polyphenol oxidase (PPO), as well as the content of non-enzymatic antioxidants (glutathione and ascorbic acid) decreased under As stress. In most of the parameters in radish, As III concentration showed maximum reduction, as compared to As I and II concentrations. However, the individual and combined application of Si and NO significantly alleviated the As-mediated oxidative stress in radish plants by increasing the protein, and metabolites content. Enhancement in the activities of CAT, APX, POD and PPO enzymes were recorded. Contents of glutathione and ascorbic acid were also enhanced in response to co-application of Si and NO under As stress. Results obtained were more pronounced when Si and NO were applied in combination under As stress, as compared to their individual application. In short, the current study highlights that Si and NO synergistically regulate plant growth through lowering the As-mediated oxidative stress by upregulating the metabolites content, activity of antioxidative enzymes and non-enzymatic antioxidants in radish plants.

  相似文献   
8.
The aim of current work was to determine essential oils (EOs) composition from three Eucalyptus species, including E. citriodora, E. camaldulensis and E. globulus and assess their α-glucosidase inhibitory activity. The EOs were collected using the hydrodistillation technique and characterized by GC/MS, GC-FID and NMR. The isolated EOs from leaves parts of Eucalyptus species varied from 0.56 to 1.0 % on fresh weight basis. The content of the EOs was distinct according to the species. The most abundant metabolites were identified as citronellal (0–83.0 %), 1,8-cineole (0.2–44.8 %), spathulenol (0.4–16.1 %) α-pinene (0.4–15.9 %), p-cymene (3.7–11.9 %), citronellol (0–8.6 %), β-eudesmol (5.3–8.6 %) and β-pinene (0–7.1 %). The EOs obtained from targeted samples exhibited strong α-glucosidase inhibitory activity. These results are encouraging and underline that the EOs of Eucalyptus species may be a promising alternative source of natural antidiabetic.  相似文献   
9.
Summary Mass cultivation of Spirulina for commercial application suffers from poor productivity when measured against laboratory results or theoretical projections. Wider applications of algal products require that this gap be reduced. Addition of eucalyptus kraft black liquor at a maximum of 0.1% to Spirulina cultures enhanced biomass productivity by at least 40%. The factors enhancing Spirulina biomass productivity were insoluble at low pH, of low molecular mass and stable to high temperature. Single addition of kraft black liquor in outdoor continuous cultures afforded sustained enhancement in biomass productivity for at least eight weeks.  相似文献   
10.
Incubation of cucumber cotyledons with fusicoccin increasedtheir fresh weights and chlorophyll levels and this effect wasenhanced by KCl. Addition of fusicoccin to this combinationincreased fresh weights but decreased chlorophyll levels. Thissuggests that the effects of fusiccocin on these two processesare probably mediated via different mechanisms. (Received January 4, 1982; Accepted March 25, 1982)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号