首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
  2021年   1篇
  2014年   3篇
  2013年   6篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
Synthesis of human walking: A planar model for single support   总被引:3,自引:0,他引:3  
A mathematical model for the single support phase of normal, level, human walking is formulated. The motion of the lower extremity is synthesized using a preprogrammed set of inputs, recognized by the model as a simple collection of applied joint moments.

Two mechanisms are forwarded as candidates for producing the observed peaks in the vertical ground reaction. The first, stance knee flexion-extension, generates the necessary level of whole-body vertical acceleration during the initial region of single support (opposite toe-off to heel-off). A model accounting for the determinants of foot and knee interaction then predicts the second peak to be the result of an increasing ankle moment in the region from heel-off to opposite heel-strike.  相似文献   

2.
This paper presents a dynamical analysis of quadrupedal locomotion, with specific reference to an adult Nubian goat. Measurements of ground reaction forces and limb motion are used to assess variations in intersegmental forces, joint moments, and instantaneous power for three discernible gaits: walking, running, and jumping. In each case, inertial effects of the torso are shown to dominate to the extent that lower-extremity contributions may be considered negligible. Footforces generated by the forelimbs exceed those exerted by the hindlimbs; and, in general, ground reactions increase with speed. The shoulder and hip dominate mechanical energy production during walking, while the knee plays a more significant role in running. In both cases, however, the elbow absorbs energy, and by so doing functions primarily as a damping (control) element. As opposed to either walking or running, jumping requires total horizontal retardation of the body's center of mass. In this instance, generating the necessary vertical thrust amounts to energy absorption at all joints of the lower extremities.  相似文献   
3.
Optimal muscular coordination strategies for jumping   总被引:5,自引:0,他引:5  
This paper presents a detailed analysis of an optimal control solution to a maximum height squat jump, based upon how muscles accelerate and contribute power to the body segments during the ground contact phase of jumping. Quantitative comparisons of model and experimental results expose a proximal-to-distal sequence of muscle activation (i.e. from hip to knee to ankle). We found that the contribution of muscles dominates both the angular acceleration and the instantaneous power of the segments. However, the contributions of gravity and segmental motion are insignificant, except the latter become important during the final 10% of the jump. Vasti and gluteus maximus muscles are the major energy producers of the lower extremity. These muscles are the prime movers of the lower extremity because they dominate the angular acceleration of the hip toward extension and the instantaneous power of the trunk. In contrast, the ankle plantarflexors (soleus, gastrocnemius, and the other plantarflexors) dominate the total energy of the thigh, though these muscles also contribute appreciably to trunk power during the final 20% of the jump. Therefore, the contribution of these muscles to overall jumping performance cannot be neglected. We found that the biarticular gastrocnemius increases jump height (i.e. the net vertical displacement of the center of mass of the body from standing) by as much as 25%. However, this increase is not due to any unique biarticular action (e.g. proximal-to-distal power transfer from the knee to the ankle), since jumping performance is similar when gastrocnemius is replaced with a uniarticular ankle plantarflexor.  相似文献   
4.
This paper describes a computational method for solving optimal control problems involving large-scale, nonlinear, dynamical systems. Central to the approach is the idea that any optimal control problem can be converted into a standard nonlinear programming problem by parameterizing each control history using a set of nodal points, which then become the variables in the resulting parameter optimization problem. A key feature of the method is that it dispenses with the need to solve the two-point, boundary-value problem derived from the necessary conditions of optimal control theory. Gradient-based methods for solving such problems do not always converge due to computational errors introduced by the highly nonlinear characteristics of the costate variables. Instead, by converting the optimal control problem into a parameter optimization problem, any number of well-developed and proven nonlinear programming algorithms can be used to compute the near-optimal control trajectories. The utility of the parameter optimization approach for solving general optimal control problems for human movement is demonstrated by applying it to a detailed optimal control model for maximum-height human jumping. The validity of the near-optimal control solution is established by comparing it to a solution of the two-point, boundary-value problem derived on the basis of a bang-bang optimal control algorithm. Quantitative comparisons between model and experiment further show that the parameter optimization solution reproduces the major features of a maximum-height, countermovement jump (i.e., trajectories of body-segmental displacements, vertical and fore-aft ground reaction forces, displacement, velocity, and acceleration of the whole-body center of mass, pattern of lower-extremity muscular activity, jump height, and total ground contact time).  相似文献   
5.
A mathematical (computer) model was developed and used to study the mechanics of the human knee during extension exercises employing an isokinetic dynamometer. All parts of the body were fixed to ground, except for the right shank and foot, which were free to move in the parasagittal plane. A linkage attached the dynamometer to the shank; tibiofemoral articulation consisted of single-point contact, allowing both sliding and rolling to occur. Physiologically based representations of ligaments and muscles imparted forces to the shank. A forward dynamics simulation was performed to calculate the forces developed in the knee for isokinetic speeds ranging from 0 (isometric exercise) to 300 degrees /s. Simulations were conducted for a constant-speed phase during isokinetic knee extension exercise. It was assumed for the duration of each simulated exercise that the quadriceps were fully activated and the other muscles were fully deactivated. The force in the anterior cruciate ligament was found to be governed by the force-velocity properties of the quadriceps; the model predicts that 300 deg/sec isokinetic exercise can reduce the force transmitted to the ACL by almost a factor of two compared with that present during isometric knee extension.  相似文献   
6.
In this two-part paper, a variety of three-dimensional, dynamical models are constructed for simulating the single support phases of normal and pathological human gait. A major objective of this work is to quantify the influence of individual gait determinants on the ground reaction forces generated during normal, level walking. To this end, Part 1 presents a three-dimensional, seven degree-of-freedom model incorporating five of the six fundamental determinants of gait. On the basis of crude muscle-force and/or joint-moment trajectories, body-segmental motions and ground reaction forces are synthesized open loop. Through a quantitative comparison with experimental gait data, the model's predictions are evaluated. Our simulation results suggest that pelvic list is not as dominant a dynamical determinant as either stance knee flexion-extension or foot and knee interaction. Transverse pelvic rotation, however, makes an important contribution by limiting the magnitude of the horizontal ground reaction prior to opposite heel-strike.  相似文献   
7.
Pattern of anterior cruciate ligament force in normal walking   总被引:6,自引:0,他引:6  
The goal of this study was to calculate and explain the pattern of anterior cruciate ligament (ACL) loading during normal level walking. Knee-ligament forces were obtained by a two-step procedure. First, a three-dimensional (3D) model of the whole body was used together with dynamic optimization theory to calculate body-segmental motions, ground reaction forces, and leg-muscle forces for one cycle of gait. Joint angles, ground reaction forces, and muscle forces obtained from the gait simulation were then input into a musculoskeletal model of the lower limb that incorporated a 3D model of the knee. The relative positions of the femur, tibia, and patella and the forces induced in the knee ligaments were found by solving a static equilibrium problem at each instant during the simulated gait cycle. The model simulation predicted that the ACL bears load throughout stance. Peak force in the ACL (303 N) occurred at the beginning of single-leg stance (i.e., contralateral toe off). The pattern of ACL force was explained by the shear forces acting at the knee. The balance of muscle forces, ground reaction forces, and joint contact forces applied to the leg determined the magnitude and direction of the total shear force acting at the knee. The ACL was loaded whenever the total shear force pointed anteriorly. In early stance, the anterior shear force from the patellar tendon dominated the total shear force applied to the leg, and so maximum force was transmitted to the ACL at this time. ACL force was small in late stance because the anterior shear forces supplied by the patellar tendon, gastrocnemius, and tibiofemoral contact were nearly balanced by the posterior component of the ground reaction.  相似文献   
8.
A three-dimensional dynamic simulation of walking was used together with induced position analysis to determine how kinematic conditions at toe-off and muscle forces following toe-off affect peak knee flexion during the swing phase of normal gait. The flexion velocity of the swing-limb knee at toe-off contributed 30 degrees to the peak knee flexion angle; this was larger than any contribution from an individual muscle or joint moment. Swing-limb muscles individually made large contributions to knee angle (i.e., as large as 22 degrees), but their actions tended to balance one another, so that the combined contribution from all swing-limb muscles was small (i.e., less than 3 degrees of flexion). The uniarticular muscles of the swing limb made contributions to knee flexion that were an order of magnitude larger than the biarticular muscles of the swing limb. The results of the induced position analysis make clear the importance of knee flexion velocity at toe-off relative to the effects of muscle forces exerted after toe-off in generating peak knee flexion angle. In addition to improving our understanding of normal gait, this study provides a basis for analyzing stiff-knee gait, a movement abnormality in which knee flexion in swing is diminished.  相似文献   
9.
Of the computational models of the cervical spine reported in the literature, not one takes into account the changes in muscle paths due to the underlying vertebrae. Instead, all model the individual muscle paths as straight-line segments. The major aim of this study was to quantify the changes in muscle moment arm, muscle force and joint moment due to muscle wrapping in the cervical spine. Five muscles in a straight-line model of the cervical spine were wrapped around underlying vertebrae, and the results obtained from this model were compared against the original. The two models were then validated against experimental and computational data. Results show that muscle wrapping has a significant effect on muscle moment arms and therefore joint moments and should not be neglected.  相似文献   
10.
Hill-type muscle models are commonly used in musculoskeletal models to estimate muscle forces during human movement. However, the sensitivity of model predictions of muscle function to changes in muscle moment arms and muscle-tendon properties is not well understood. In the present study, a three-dimensional muscle-actuated model of the body was used to evaluate the sensitivity of the function of the major lower limb muscles in accelerating the whole-body center of mass during gait. Monte-Carlo analyses were used to quantify the effects of entire distributions of perturbations in the moment arms and architectural properties of muscles. In most cases, varying the moment arm and architectural properties of a muscle affected the torque generated by that muscle about the joint(s) it spanned as well as the torques generated by adjacent muscles. Muscle function was most sensitive to changes in tendon slack length and least sensitive to changes in muscle moment arm. However, the sensitivity of muscle function to changes in moment arms and architectural properties was highly muscle-specific; muscle function was most sensitive in the cases of gastrocnemius and rectus femoris and insensitive in the cases of hamstrings and the medial sub-region of gluteus maximus. The sensitivity of a muscle's function was influenced by the magnitude of the muscle's force as well as the operating region of the muscle on its force-length curve. These findings have implications for the development of subject-specific models of the human musculoskeletal system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号