首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   43篇
  460篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   17篇
  2014年   17篇
  2013年   26篇
  2012年   15篇
  2011年   17篇
  2010年   25篇
  2009年   24篇
  2008年   21篇
  2007年   18篇
  2006年   14篇
  2005年   18篇
  2004年   22篇
  2003年   12篇
  2002年   12篇
  2001年   19篇
  2000年   12篇
  1999年   6篇
  1998年   10篇
  1997年   13篇
  1996年   9篇
  1995年   9篇
  1994年   7篇
  1993年   10篇
  1992年   3篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1988年   8篇
  1986年   1篇
  1985年   5篇
  1984年   4篇
  1983年   6篇
  1982年   16篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
  1968年   2篇
排序方式: 共有460条查询结果,搜索用时 15 毫秒
1.
2.
We have cloned and characterized a cDNA encoding a maize (Zea mays L.) heat shock protein (HSP), HSP26. The mRNA of HSP26 is present as a single mRNA species of 1.1 kilobase pairs in size and is detectable when maize seedlings are treated at 40°C but not at 28°C. Accumulation of HSP26 mRNA was detected after 10 minutes of incubation at 40°C, reaching the maximum level after 1 hour. Comparison of the deduced amino acid sequence of maize HSP26 to other HSPs indicated a strong homology to the sequences of two nuclear encoded HSPs that are transported into the chloroplasts during heat shock: pea HSP21 and soybean HSP22. Maize HSP26 was also found to cross-react with anti-pea chloroplast HSP21 antibodies. Because of the sequence homology between maize HSP26, soybean HSP22, and pea HSP21, in vitro chloroplast protein import experiments were conducted. The in vitro synthesized maize HSP26 is specifically imported to the soluble fraction of the chloroplast and processed to a smaller polypeptide. The sequence homology and antibody cross-reactivity between maize HSP26 and pea HSP21 have allowed us to conclude that maize HSP26 is a nuclear-encoded, plastid-localized protein in maize.  相似文献   
3.
Three cDNA clones (GmHSP23.9, GmHSP22.3, and GmHSP22.5) representing three different members of the low-molecular-weight (LMW) heat shock protein (HSP) gene superfamily were isolated and characterized. A fourth cDNA clone, pFS2033, was partially characterized previously as a full-length genomic clone GmHSP22.0. The deduced amino acid sequences of all four cDNA clones have the conserved carboxyl-terminal LMW HSP domain. Sequence and hydropathy analyses of GmHSP22, GmHSP22.3, and GmHSP22.5, representing HSPs in the 20 to 24 kDa range, indicate they contain amino-terminal signal peptides. The mRNAs from GmHSP22, GmHSP22.3, and GmHSP22.5 were preferentially associated in vivo with endoplasmic reticulum (ER)-bound polysomes. GmHSP22 and GmHSP22.5 encode strikingly similar proteins; they are 78% identical and 90% conserved at the amino acid sequence level, and both possess the C-terminal tetrapeptide KQEL which is similar to the consensus ER retention motif KDEL; the encoded polypeptides can be clearly resolved from each other by two-dimensional gel analysis of their hybrid-arrest translation products. GmHSP22.3 is less closely related to GmHSP22 (48% identical and 70% conserved) and GmHSP22.5 (47% identical and 65% conserved). The fourth cDNA clone, GmHSP23.9, encodes a HSP of ca. 24kDa with an amino terminus that has characteristics of some mitochondrial transit sequences, and in contrast to GmHSP22, GmHSP22.3, and GmHSP22.5, the corresponding mRNA is preferentially associated in vivo with free polysomes. It is proposed that the LMW HSP gene superfamily be expanded to at least six classes to include a mitochondrial class and an additional endomembrane class of LMW HSPs.  相似文献   
4.
Soybean cyst nematode (SCN) is a major soybean yield-limiting pest. The present study was conducted to map broad-based SCN resistance loci from the cultivar Hartwig. Two-hundred F23 lines derived from the cross Williams 82 x Hartwig were screened with a fourth-generation SCN inbred and 56 polymorphic molecular markers. Allele states and phenotypes were analyzed using stepwise regression and the model selection was made at P 0.01. Four unlinked RFLP markers (A006, A567, A487, A112) were associated with SCN resistance and the partial coefficient of determinations (R2) were 91%, 1%, 1%, and 1%. We have mapped a new, major SCN resistance locus (A006) and three minor loci (A567, A487, A112). This complete mapping will accelerate the transfer of broad-based resistance without linkage drag and aid in the determination of relationships among various SCN-resistant germplasm sources.  相似文献   
5.
6.
7.
8.
9.
The molecular integrity of the active site of phytases from fungi is critical for maintaining phytase function as efficient catalytic machines. In this study, the molecular dynamics (MD) of two monomers of phytase B from Aspergillus niger, the disulfide intact monomer (NAP) and a monomer with broken disulfide bonds (RAP), were simulated to explore the conformational basis of the loss of catalytic activity when disulfide bonds are broken. The simulations indicated that the overall secondary and tertiary structures of the two monomers were nearly identical but differed in some crucial secondary–structural elements in the vicinity of the disulfide bonds and catalytic site. Disulfide bonds stabilize the β-sheet that contains residue Arg66 of the active site and destabilize the α-helix that contains the catalytic residue Asp319. This stabilization and destabilization lead to changes in the shape of the active–site pocket. Functionally important hydrogen bonds and atomic fluctuations in the catalytic pocket change during the RAP simulation. None of the disulfide bonds are in or near the catalytic pocket but are most likely essential for maintaining the native conformation of the catalytic site.

Abbreviations

PhyB - 2.5 pH acid phophatese from Aspergillus niger, NAP - disulphide intact monomer of Phytase B, RAP - disulphide reduced monomer of Phytase B, Rg - radius of gyration, RMSD - root mean square deviation, MD - molecular dynamics.  相似文献   
10.

Background:

Vascular growth is a prerequisite for adipose tissue (AT) development and expansion. Some AT cytokines and hormones have effects on vascular development, like vascular endothelial growth factor (VEGF‐A), angiopoietin (ANG‐1), ANG‐2 and angiopoietin‐like protein‐4 (ANGPTL‐4).

Methods:

In this study, the independent and combined effects of diet‐induced weight loss and exercise on AT gene expression and proteins levels of those angiogenic factors were investigated. Seventy‐nine obese males and females were randomized to: 1. Exercise‐only (EXO; 12‐weeks exercise without diet‐restriction), 2. Hypocaloric diet (DIO; 8‐weeks very low energy diet (VLED) + 4‐weeks weight maintenance diet) and 3. Hypocaloric diet and exercise (DEX; 8‐weeks VLED + 4‐weeks weight maintenance diet combined with exercise throughout the 12 weeks). Blood samples and fat biopsies were taken before and after the intervention.

Results:

Weight loss was 3.5 kg in the EXO group and 12.3 kg in the DIO and DEX groups. VEGF‐A protein was non‐significantly reduced in the weight loss groups. ANG‐1 protein levels were significantly reduced 22‐25% after all three interventions (P < 0.01). The ANG‐1/ANG‐2 ratio was also decreased in all three groups (P < 0.05) by 27‐38%. ANGPTL‐4 was increased in the EXO group (15%, P < 0.05) and 9% (P < 0.05) in the DIO group. VEGF‐A, ANG‐1, and ANGPTL‐4 were all expressed in human AT, but only ANGPTL‐4 was influenced by the interventions.

Conclusions:

Our data show that serum VEGF‐A, ANG‐1, ANG‐2, and ANGPTL‐4 levels are influenced by weight changes, indicating the involvement of these factors in the obese state. Moreover, it was found that weight loss generally was associated with a reduced angiogenic activity in the circulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号