首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The P23H mutation in the rhodopsin gene causes rhodopsin misfolding, altered trafficking and formation of insoluble aggregates leading to photoreceptor degeneration and autosomal dominant retinitis pigmentosa (RP). There are no effective therapies to treat this condition. Compounds that enhance dissociation of protein aggregates may be of value in developing new treatments for such diseases. Anti-protein aggregating activity of curcumin has been reported earlier. In this study we present that treatment of COS-7 cells expressing mutant rhodopsin with curcumin results in dissociation of mutant protein aggregates and decreases endoplasmic reticulum stress. Furthermore we demonstrate that administration of curcumin to P23H-rhodopsin transgenic rats improves retinal morphology, physiology, gene expression and localization of rhodopsin. Our findings indicate that supplementation of curcumin improves retinal structure and function in P23H-rhodopsin transgenic rats. This data also suggest that curcumin may serve as a potential therapeutic agent in treating RP due to the P23H rhodopsin mutation and perhaps other degenerative diseases caused by protein trafficking defects.  相似文献   
2.
3.
We herein describe the synthesis and antimycobacterial activity of a series of 27 different derivatives of 3-benzyl-6-bromo-2-methoxy-quinolines and amides of 2-[(6-bromo-2-methoxy-quinolin-3-yl)-phenyl-methyl]-malonic acid monomethyl ester. The antimycobacterial activity of these compounds was evaluated in vitro against Mycobacterium tuberculosis H37Rv for nine consecutive days upon a fixed concentration (6.25 μg/mL) at day one in Bactec assay and compared to untreated TB cell culture as well as one with isoniazide treated counterpart, under identical experimental conditions. The compounds 3, 8, 17 and 18 have shown 92–100% growth inhibition of mycobacterial activity, with minimum inhibitory concentration (MIC) of 6.25 μg/mL. Based on our molecular modelling and docking studies on well-known diarylquinoline antitubercular drug R207910, the presence of phenyl, naphthyl and halogen moieties seem critical. Comparison of docking studies on different stereoisomers of R207910 as well as compounds from our data set, suggests importance of electrostatic interactions. Further structural analysis of docking studies on our compounds suggests attractive starting point to find new lead compounds with potential improvements.  相似文献   
4.
5.
6.
A new series of 20 quinoline derivatives possessing triazolo, ureido and thioureido substituents have been synthesized and their antimycobacterial properties have been evaluated. Compounds 10, 22 and 24 inhibited Mycobacterium tuberculosis H37Rv up to 96%, 98% and 94% respectively, at a fixed concentration of 6.25 μg/mL. Minimum inhibitory concentration of 3.125 μg/mL was obtained for compound 10 and 24, while for compound 22 it was 6.25 μg/mL. Molecular docking calculations suggest critical hydrogen bonding and electrostatic interactions between polar functional groups (such as quinoline-nitrogen, urea-carbonyl and hydroxyl) of anti-mycobacterial (anti-TB) compounds and amino acids (Arg186 and Glu61) of ATP-synthase of M. tuberculosis, could be the probable reason for observed anti-mycobacterial action.  相似文献   
7.
Choroideremia (CHM) is an X- linked retinal degeneration that is symptomatic in the 1st or 2nd decade of life causing nyctalopia and loss of peripheral vision. The disease progresses through mid-life, when most patients become blind. CHM is a favorable target for gene augmentation therapy, as the disease is due to loss of function of a protein necessary for retinal cell health, Rab Escort Protein 1 (REP1).The CHM cDNA can be packaged in recombinant adeno-associated virus (rAAV), which has an established track record in human gene therapy studies, and, in addition, there are sensitive and quantitative assays to document REP1 activity. An animal model that accurately reflects the human condition is not available. In this study, we tested the ability to restore REP1 function in personalized in vitro models of CHM: lymphoblasts and induced pluripotent stems cells (iPSCs) from human patients. The initial step of evaluating safety of the treatment was carried out by evaluating for acute retinal histopathologic effects in normal-sighted mice and no obvious toxicity was identified. Delivery of the CHM cDNA to affected cells restores REP1 enzymatic activity and also restores proper protein trafficking. The gene transfer is efficient and the preliminary safety data are encouraging. These studies pave the way for a human clinical trial of gene therapy for CHM.  相似文献   
8.
9.
DNA double-strand breaks (DSBs) are particularly lethal and genotoxic lesions, that can arise either by endogenous (physiological or pathological) processes or by exogenous factors, particularly ionizing radiation and radiomimetic compounds. Phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX, is an early response to DNA double-strand breaks1. This phosphorylation event is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Overall, DSB induction results in the formation of discrete nuclear γH2AX foci which can be easily detected and quantitated by immunofluorescence microscopy2. Given the unique specificity and sensitivity of this marker, analysis of γH2AX foci has led to a wide range of applications in biomedical research, particularly in radiation biology and nuclear medicine. The quantitation of γH2AX foci has been most widely investigated in cell culture systems in the context of ionizing radiation-induced DSBs. Apart from cellular radiosensitivity, immunofluorescence based assays have also been used to evaluate the efficacy of radiation-modifying compounds. In addition, γH2AX has been used as a molecular marker to examine the efficacy of various DSB-inducing compounds and is recently being heralded as important marker of ageing and disease, particularly cancer3. Further, immunofluorescence-based methods have been adapted to suit detection and quantitation of γH2AX foci ex vivo and in vivo4,5. Here, we demonstrate a typical immunofluorescence method for detection and quantitation of γH2AX foci in mouse tissues.Download video file.(284M, mp4)  相似文献   
10.
DNA double-strand breaks (DSBs), which are induced by either endogenous metabolic processes or by exogenous sources, are one of the most critical DNA lesions with respect to survival and preservation of genomic integrity. An early response to the induction of DSBs is phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX1. Following induction of DSBs, H2AX is rapidly phosphorylated by the phosphatidyl-inosito 3-kinase (PIKK) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Typically, only a few base-pairs (bp) are implicated in a DSB, however, there is significant signal amplification, given the importance of chromatin modifications in DNA damage signalling and repair. Phosphorylation of H2AX mediated predominantly by ATM spreads to adjacent areas of chromatin, affecting approximately 0.03% of total cellular H2AX per DSB2,3. This corresponds to phosphorylation of approximately 2000 H2AX molecules spanning ~2 Mbp regions of chromatin surrounding the site of the DSB and results in the formation of discrete γH2AX foci which can be easily visualized and quantitated by immunofluorescence microscopy2. The loss of γH2AX at DSB reflects repair, however, there is some controversy as to what defines complete repair of DSBs; it has been proposed that rejoining of both strands of DNA is adequate however, it has also been suggested that re-instatement of the original chromatin state of compaction is necessary4-8. The disappearence of γH2AX involves at least in part, dephosphorylation by phosphatases, phosphatase 2A and phosphatase 4C5,6. Further, removal of γH2AX by redistribution involving histone exchange with H2A.Z has been implicated7,8. Importantly, the quantitative analysis of γH2AX foci has led to a wide range of applications in medical and nuclear research. Here, we demonstrate the most commonly used immunofluorescence method for evaluation of initial DNA damage by detection and quantitation of γH2AX foci in γ-irradiated adherent human keratinocytes9.Download video file.(225M, mp4)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号