首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   5篇
  2023年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
G Landis  D Bhole  L Lu  J Tower 《Genetics》2001,158(3):1167-1176
Genome sequencing reveals that a large percentage of Drosophila genes have homologs in humans, including many human disease genes. The goal of this research was to develop methods to efficiently test Drosophila genes for functions in vivo. An important challenge is the fact that many genes function at more than one point during development and during the life cycle. Conditional expression systems such as promoters regulated by tetracycline (or its derivative doxycycline) are often ideal for testing gene functions. However, generation of transgenic animals for each gene of interest is impractical. Placing the doxycycline-inducible ("tet-on") promoter directed out of the end of the P transposable element produced a mobile, doxycycline-inducible promoter element, named PdL. PdL was mobilized to 228 locations in the genome and was found to generate conditional (doxycycline-dependent), dominant mutations at high frequency. The temporal control of gene overexpression allowed generation of mutant phenotypes specific to different stages of the life cycle, including metamorphosis and aging. Mutations characterized included inserts in the alpha-mannosidase II (dGMII), ash1, and pumilio genes. Novel phenotypes were identified for each gene, including specific developmental defects and increased or decreased life span. The PdL system should facilitate testing of a large fraction of Drosophila genes for overexpression and misexpression phenotypes at specific developmental and life cycle stages.  相似文献   
2.

Objective

To conduct a systematic review of studies reporting on the validity of International Classification of Diseases (ICD) codes for identifying stroke in administrative data.

Methods

MEDLINE and EMBASE were searched (inception to February 2015) for studies: (a) Using administrative data to identify stroke; or (b) Evaluating the validity of stroke codes in administrative data; and (c) Reporting validation statistics (sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), or Kappa scores) for stroke, or data sufficient for their calculation. Additional articles were located by hand search (up to February 2015) of original papers. Studies solely evaluating codes for transient ischaemic attack were excluded. Data were extracted by two independent reviewers; article quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool.

Results

Seventy-seven studies published from 1976–2015 were included. The sensitivity of ICD-9 430-438/ICD-10 I60-I69 for any cerebrovascular disease was ≥ 82% in most [≥ 50%] studies, and specificity and NPV were both ≥ 95%. The PPV of these codes for any cerebrovascular disease was ≥ 81% in most studies, while the PPV specifically for acute stroke was ≤ 68%. In at least 50% of studies, PPVs were ≥ 93% for subarachnoid haemorrhage (ICD-9 430/ICD-10 I60), 89% for intracerebral haemorrhage (ICD-9 431/ICD-10 I61), and 82% for ischaemic stroke (ICD-9 434/ICD-10 I63 or ICD-9 434&436). For in-hospital deaths, sensitivity was 55%. For cerebrovascular disease or acute stroke as a cause-of-death on death certificates, sensitivity was ≤ 71% in most studies while PPV was ≥ 87%.

Conclusions

While most cases of prevalent cerebrovascular disease can be detected using 430-438/I60-I69 collectively, acute stroke must be defined using more specific codes. Most in-hospital deaths and death certificates with stroke as a cause-of-death correspond to true stroke deaths. Linking vital statistics and hospitalization data may improve the ascertainment of fatal stroke.  相似文献   
3.
4.
5.
The early initiation phase of acute inflammation is anabolic and primarily requires glycolysis with reduced mitochondrial glucose oxidation for energy, whereas the later adaptation phase is catabolic and primarily requires fatty acid oxidation for energy. We reported previously that switching from the early to the late acute inflammatory response following TLR4 stimulation depends on NAD(+) activation of deacetylase sirtuin 1 (SirT1). Here, we tested whether NAD(+) sensing by sirtuins couples metabolic polarity with the acute inflammatory response. We found in TLR4-stimulated THP-1 promonocytes that SirT1 and SirT 6 support a switch from increased glycolysis to increased fatty acid oxidation as early inflammation converts to late inflammation. Glycolysis enhancement required hypoxia-inducing factor-1α to up-regulate glucose transporter Glut1, phospho-fructose kinase, and pyruvate dehydrogenase kinase 1, which interrupted pyruvate dehydrogenase and reduced mitochondrial glucose oxidation. The shift to late acute inflammation and elevated fatty acid oxidation required peroxisome proliferator-activated receptor γ coactivators PGC-1α and β to increase external membrane CD36 and fatty acid mitochondrial transporter carnitine palmitoyl transferase 1. Metabolic coupling between early and late responses also required NAD(+) production from nicotinamide phosphoryltransferase (Nampt) and activation of SirT6 to reduce glycolysis and SirT1 to increase fatty oxidation. We confirmed similar shifts in metabolic polarity during the late immunosuppressed stage of human sepsis blood leukocytes and murine sepsis splenocytes. We conclude that NAD(+)-dependent bioenergy shifts link metabolism with the early and late stages of acute inflammation.  相似文献   
6.
7.

Background

Collagen, a triple-helical, self-organizing protein, is the predominant structural protein in mammals. It is found in bone, ligament, tendon, cartilage, intervertebral disc, skin, blood vessel, and cornea. We have recently postulated that fibrillar collagens (and their complementary enzymes) comprise the basis of a smart structural system which appears to support the retention of molecules in fibrils which are under tensile mechanical strain. The theory suggests that the mechanisms which drive the preferential accumulation of collagen in loaded tissue operate at the molecular level and are not solely cell-driven. The concept reduces control of matrix morphology to an interaction between molecules and the most relevant, physical, and persistent signal: mechanical strain.

Methodology/Principal Findings

The investigation was carried out in an environmentally-controlled microbioreactor in which reconstituted type I collagen micronetworks were gently strained between micropipettes. The strained micronetworks were exposed to active matrix metalloproteinase 8 (MMP-8) and relative degradation rates for loaded and unloaded fibrils were tracked simultaneously using label-free differential interference contrast (DIC) imaging. It was found that applied tensile mechanical strain significantly increased degradation time of loaded fibrils compared to unloaded, paired controls. In many cases, strained fibrils were detectable long after unstrained fibrils were degraded.

Conclusions/Significance

In this investigation we demonstrate for the first time that applied mechanical strain preferentially preserves collagen fibrils in the presence of a physiologically-important mammalian enzyme: MMP-8. These results have the potential to contribute to our understanding of many collagen matrix phenomena including development, adaptation, remodeling and disease. Additionally, tissue engineering could benefit from the ability to sculpt desired structures from physiologically compatible and mutable collagen.  相似文献   
8.
9.
Mulundocandin (1), is an echinocandin class of lipopeptide. It has wide spectrum of antifungal activity against Candida and Aspergillus species. Semisynthetic modification at Ornithine-5-hydroxyl (hemiaminal function) of 1 was carried out to improve solution stability and hence in vivo activity. Synthesis of ether (C-OR), thioether (C-SR) and C-N linkage at hemiaminal function have been described. All synthetic analogues were evaluated for their stability in aqueous solution and found to be more stable than mulundocandin. Antifungal activity of Orn-5 analogues was evaluated both in vitro against Candida albicans and Aspergillus fumigatus by agar well method and in vivo (oral and intraperitoneal) in C. albicans infected Swiss mice. Results of in vivo assays of analogues 2-9 by the oral route suggests that the introduction of either oxygen nucleophiles (-OR) or sulphur nucleophiles (-SR), at either Orn-5 or at both Orn-5 and HTyr-4 positions, results in retaining the activity of the parent compound with improved aqueous stability in most cases. Compound 9 has shown improved antifungal activity in comparison to mulundocandin by oral application in Swiss mice.  相似文献   
10.
Targeted delivery can potentially improve the pharmacological effects of antisense and siRNA oligonucleotides. Here, we describe a novel bioconjugation approach to the delivery of splice-shifting antisense oligonucleotides (SSOs). The SSOs are linked to albumin via reversible S-S bonds. The albumin is also conjugated with poly(ethylene glycol) (PEG) chains that terminate in an RGD ligand that selectively binds the alphavbeta3 integrin. As a test system, we utilized human melanoma cells that express the alphavbeta3 integrin and that also contain a luciferase reporter gene that can be induced by delivery of SSOs to the cell nucleus. The RGD-PEG-SSO-albumin conjugates were endocytosed by the cells in an RGD-dependent manner; using confocal fluorescence microscopy, evidence was obtained that the SSOs accumulate in the nucleus. The conjugates were able to robustly induce luciferase expression at concentrations in the 25-200 nM range. At these levels, little short-term or long-term toxicity was observed. Thus, the RGD-PEG-albumin conjugates may provide an effective tool for targeted delivery of oligonucleotides to certain cells and tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号