首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   3篇
  152篇
  2024年   1篇
  2023年   2篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   11篇
  2012年   13篇
  2011年   16篇
  2010年   4篇
  2009年   7篇
  2008年   10篇
  2007年   10篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   7篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1983年   1篇
  1981年   1篇
  1956年   1篇
排序方式: 共有152条查询结果,搜索用时 0 毫秒
1.
2.
3.
Abstract We examined whether differences in life-history characteristics can explain interspecific variation in stochastic population dynamics in nine marine fish species living in the Barents Sea system. After observation errors in population estimates were accounted for, temporal variability in natural mortality rate, annual recruitment, and population growth rate was negatively related to generation time. Mean natural mortality rate, annual recruitment, and population growth rate were lower in long-lived species than in short-lived species. Thus, important species-specific characteristics of the population dynamics were related to the species position along the slow-fast continuum of life-history variation. These relationships were further associated with interspecific differences in ecology: species at the fast end were mainly pelagic, with short generation times and high natural mortality, annual recruitment, and population growth rates, and also showed high temporal variability in those demographic traits. In contrast, species at the slow end were long-lived, deepwater species with low rates and reduced temporal variability in the same demographic traits. These interspecific relationships show that the life-history characteristics of a species can predict basic features of interspecific variation in population dynamical characteristics of marine fish, which should have implications for the choice of harvest strategy to facilitate sustainable yields.  相似文献   
4.
Selås V  Kålås JA 《Oecologia》2007,153(3):555-561
Two recent studies on territory occupancy rates of goshawk Accipiter gentilis and gyrfalcon Falco rusticolus report a 2–3-year-delayed numerical response to grouse numbers, which is a requirement for a hypothesis of predator-generated grouse cycles. The time lags were assumed to reflect the average age of sexual maturity in the raptor species. In southern Norway, however, subadult (two-year-old) goshawk hens occupied only 18–25% of territories where occupancy was not recorded in the preceding year, and there was no significant relationship between the proportion of subadults among recruits and grouse indices two years earlier. We argue that territory occupancy rates are not appropriate indices of total raptor population levels, but rather reflect the proportion of territorial pairs that attempt to nest. Because this depends on the body condition of the hens, fluctuations in other important winter resident prey species (most important for the goshawk) and winter weather (most important for the gyrfalcon) should also be addressed. During 1988–2006, the annual proportion of goshawk territories with recorded nesting attempts in southern Norway was most closely related to the preceding autumn’s population indices of black grouse Tetrao tetrix and mountain hare Lepus timidus, whereas the annual proportion of gyrfalcon territories with observations of falcons or with confirmed breeding attempts in central Norway were best explained by population indices of willow grouse Lagopus lagopus and ptarmigan L. mutus from the previous autumn, and by December temperatures. Hence, our studies do not support the predation hypothesis for grouse cycles.  相似文献   
5.
    
Context: Troponin (hs-TnT) levels predict mortality after acute exacerbation of COPD (AECOPD). Whether this is independent of heart failure (HF) is not established.

Material and methods: Prospectively included AECOPD patients adjudicated for acute HF categorized into three groups: (A) AECOPD, but acute HF the primary cause for hospitalization; (B) AECOPD the primary cause, but co-existing myocardial dysfunction and (C) AECOPD without myocardial dysfunction.

Results: About 103 AECOPD patients; 18% A, 27% B and 54% C. Hs-TnT level differed between the groups: (ng/l, median) A: 41, B: 25 and C: 15, p?=?0.03 for A versus B and p?=?0.005 for B versus C. During a median 826 days, 47% died. In Cox analysis, hs-TnT levels remained associated with mortality (hazard ratio per 10?ng/l 1.3, p?<?0.0001).

Conclusion: hs-TnT levels are influenced by myocardial dysfunction/HF in AECOPD, but provide independent prognostic information. The prognostic merit of hs-TnT cannot be attributed to HF alone.  相似文献   
6.
Solberg EJ  Heim M  Grøtan V  Saether BE  Garel M 《Oecologia》2007,154(2):259-271
A general feature of the demography of large ungulates is that many demographic traits are dependent on female body mass at early ages. Thus, identifying the factors affecting body mass variation can give important mechanistic understanding of demographic processes. Here we relate individual variation in autumn and winter body mass of moose calves living at low density on an island in northern Norway to characteristics of their mother, and examine how these relationships are affected by annual variation in population density and climate. Body mass increased with increasing age of their mother, was lower for calves born late in the spring, decreased with litter size and was larger for males than for female calves. No residual effects of variation in density and climate were present after controlling for annual variation in mother age and calving date. The annual variation in adult female age structure and calving date explained a large part (71–75%) of the temporal variation in calf body mass. These results support the hypotheses that (a) body mass of moose calves are affected by qualities associated with mother age (e.g. body condition, calving date); and (b) populations living at low densities are partly buffered against temporal fluctuations in the environment.  相似文献   
7.
Despite the critical roles of intracellular lipid droplets (LDs) in lipid storage and metabolism, little is known about the molecular mechanisms of their functions. Several protein components associated with the surface of LDs have been identified. A major one is perilipin in adipocytes and steroidogenic cells, whereas ADRP in most other cell types. They are loosely grouped as a small protein family sharing a common N-terminal motif, called the PAT domain. Perilipin regulates the breakdown of triacylglycerol in LDs via its phosphorylation. ADRP is characterized as a fatty acid binding protein and involved in lipid uptake and LD formation. For examining the functions of perilipin and ADRP at the molecular level, we performed yeast two-hybrid screening in this study, to find their functional partners. We identified CGI-58, a product of the causal gene of Chanarin-Dorfman syndrome (CDS), as an interactor for both perilipin and ADRP. Specific interaction between CGI-58 and perilipin was confirmed in a GST-pulldown assay and supported by fluorescence microscopic analyses. We further demonstrated that CGI-58 is principally located at the surface of LDs in 3T3-L1 cells, together with perilipin, and its expression is upregulated upon stimulation for adipocyte differentiation. Other than CGI-58, we also identified in yeast two-hybrid screening HSP86 and D52 tumor proteins as binding partners of perilipin, and IRG-47 of ADRP. These factors might be cooperated with perilipin and ADRP, and hence involved in membrane dynamics of LDs as well as the regulation of lipolysis on the surface of LDs.  相似文献   
8.
9.
The synthesis, cytotoxicity, inhibition of tubulin polymerization data and anti-angiogenetic effects of seven 1,5-disubstituted 1,2,3-triazole analogs and two 1,4-disubstituted 1,2,3-triazole analogs of combretastatin A-1 (1) are reported herein. The biological studies revealed that the 1,5-disubstituted 1,2,3-triazoles 3-methoxy-6-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-5-yl)benzene-1,2-diol (6), 3-methoxy-6-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-5-yl)benzene-1,2-diamine (8) and 5-(2,3-difluoro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (9) were the three most active compounds regarding inhibition of both tubulin polymerization and angiogenesis. Molecular modeling studies revealed that combretastatins 1 and 2 and analogs 5-11 could be successfully docked into the colchicine binding site of α,β-tubulin.  相似文献   
10.
    
The mast depression hypothesis (MDH) proposes that cyclic population fluctuations of microtines and other herbivores are an effect of cyclic seed cropping of plants. This is because high seed crops, termed masts, are produced at the expense of chemical defence against herbivores. It has generally been assumed that bird-hunting raptors produce high numbers of offspring when microtine prey are abundant because of reduced competition from generalist predators. However, this may also be caused by higher production of herbivorous insects, and thus insectivorous bird prey, because of lower contents of chemical defence compounds in some plant species, such as bilberry Vaccinium myrtillus and cowberry V. vitis-idaea. In Aust-Agder county, southern Norway, the mean brood size of pied flycatcher Ficedula hypoleuca, sparrowhawk Accipiter nisus and goshawk A. gentilis was higher in peak vole years than in other years. The effect was not due to variation in nest predation, as only successful nesting attempts were included in the analyses. For the pied flycatcher, the annual proportion of large broods (>6 fledglings) was positively correlated with the vole trapping index. No correlation was found between the offspring production of goshawks and the proportion of voles in their diet. During a 3-year light-trapping study of nocturnal moths prior to our study, four moth species whose larvae ate Vaccinium were commonest in the vole peak year. All these results are consistent with the MDH. Received: 16 March 1998 / Accepted: 20 April 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号