首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   15篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   10篇
  2015年   13篇
  2014年   13篇
  2013年   13篇
  2012年   20篇
  2011年   12篇
  2010年   12篇
  2009年   9篇
  2008年   10篇
  2007年   12篇
  2006年   12篇
  2005年   10篇
  2004年   15篇
  2003年   10篇
  2002年   7篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1996年   5篇
  1995年   2篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1988年   2篇
  1984年   2篇
  1983年   1篇
  1979年   3篇
  1978年   2篇
  1970年   1篇
排序方式: 共有247条查询结果,搜索用时 250 毫秒
1.
Summary A series of experiments has established the molecular defect in the medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) gene in a family with MCAD deficiency. Demonstration of intra-mitochondrial mature MCAD indistinguishable in size (42.5-kDa) from control MCAD, and of mRNA with the correct size of 2.4 kb, indicated a point-mutation in the coding region of the MCAD gene to be disease-causing. Consequently, cloning and DNA sequencing of polymerase chain reaction (PCR) amplified complementary DNA (cDNA) from messenger RNA of fibroblasts from the patient and family members were performed. All clones sequenced from the patient exhibited a single base substitution from adenine (A) to guanine (G) at position 985 in the MCAD cDNA as the only consistent base-variation compared with control cDNA. In contrast, the parents contained cDNA with the normal and the mutated sequence, revealing their obligate carrier status. Allelic homozygosity in the patient and heterozygosity for the mutation in the parents were established by a modified PCR reaction, introducing a cleavage site for the restriction endonuclease NcoI into amplified genomic DNA containing G985. The same assay consistently revealed A985 in genomic DNA from 26 control individuals. The A to G mutation was introduced into an E. coli expression vector producing mutant MCAD, which was demonstrated to be inactive, probably because of the inability to form active tetrameric MCAD. All the experiments are consistent with the contention that the G985 mutation, resulting in a lysine to glutamate shift at position 329 in the MCAD polypeptide chain, is the genetic cause of MCAD deficiency in this family. We found the same mutation in homozygous form in 11 out of 12 other patients with verified MCAD deficiency.  相似文献   
2.
The optimal conditions were established for extraction of paralytic shellfish toxins from a Danish clone of Alexandrium tamarense using extraction with acetic acid and HCl in the concentration range 0.01–1.0 N. Physical destruction of the cells was investigated microscopically to select the most efficient extraction procedure.The toxin content was quantitated by an automized isocratic reversed-phase high-performance liquid chromatography (HPLC) method. The best results as judged from the total amount of toxins and the toxin profile were obtained using 0.05–1.0 N acetic acid and 0.01–0.02 N HCl. Hydrochloric acid in the concentration range 0.03–1.0 N caused the amount of C1 and C2 toxins to decrease sharply and concomitant increase of gonyautoxins 2 and 3.The phytoplankton extracts with 0.1 to 0.5 N acetic acid or 0.01 N HCl were stable during 6 months at –20 °C, but the extracts with HCl 0.02 N underwent a change in toxin profile, although the total amount of toxins was constant.  相似文献   
3.
Summary Elevated levels of alpha-1-fetoprotein (AFP) were found in the amniotic fluid of a 36-year-old woman in the 15th week of gestation. Because of this and the results of repeated ultrasonography, abortion was induced. An anencephalic fetus with trisomy 18 was delivered. The possible correlation among neural-tube defects, chromosomal abnormalities, and level of AFP is discussed.  相似文献   
4.
5.
An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated.  相似文献   
6.
7.
The Cbl- and ubiquitin-interacting protein T-cell ubiquitin ligand (TULA) has been demonstrated to inhibit endocytosis and downregulation of ligand-activated EGF receptor (EGFR) by impairing Cbl-induced ubiquitination. We presently report that TULA additionally inhibited clathrin-dependent endocytosis in general, as both uptake of transferrin (Tf) and low-density lipoprotein (LDL) was inhibited. Additionally, endocytosis of the raft proteins CD59 and major histocompatibility complex class I (MHC-I), which we demonstrate were mainly endocytosed clathrin-independently, but dynamin-dependently, was blocked in cells overexpressing TULA. By contrast, the uptake of ricin, which is mainly endocytosed clathrin- and dynamin-independently, was not affected by overexpressed TULA. Consistently, TULA and dynamin co-immunoprecipitated and colocalized intracellularly, and upon overexpression of dynamin the TULA-mediated inhibitory effect on endocytosis of Tf, LDL, CD59 and MHC-I was counteracted. Overexpressed dynamin did not restore ubiquitination of the EGFR, and consistently dynamin did not rescue endocytosis of the EGFR in cells overexpressing TULA. We conclude that TULA inhibits both clathrin-dependent and clathrin-independent endocytic pathways by functionally sequestering dynamin via the SH3 domain of TULA binding proline-rich sequences in dynamin.  相似文献   
8.
9.
Pediatric liver disease (PLD) is a major cause of severe morbidity and prolonged hospitalizations in children. Stratifying patients in terms of prognosis remains challenging. The limited knowledge about molecular mechanisms causing and accompanying PLD remains the main obstacle in a search for reliable prognostic biomarkers. A systematic search of MEDLINE via PubMed and Embase via OVID was conducted on studies published between August 2007 and August 2017. Molecular markers with a prognostic potential in terms of survival, need for liver transplantation or disease progression/regression were selected. In general, identified studies were single center smaller case-control studies or case series with a low level of evidence and a high risk of bias. Only 23 studies comprising 898 patients could be included, mostly focusing on biliary atresia, non-alcoholic fatty liver disease, viral hepatitis, and LT; and markers related to morphogenesis and fibrosis. Furthermore, molecular markers in metabolic pathways and inflammation shown to be relevant, however requiring further validation. Hence, further biological and clinical studies are needed to gain greater molecular insight into PLD.  相似文献   
10.
Short chain acyl-CoA dehydrogenase (SCAD) deficiency is an inborn error of the mitochondrial fatty acid metabolism caused by rare variations as well as common susceptibility variations in the SCAD gene. Earlier studies have shown that a common variant SCAD protein (R147W) was impaired in folding, and preliminary experiments suggested that the variant protein displayed prolonged association with chaperonins and delayed formation of active enzyme. Accordingly, the molecular pathogenesis of SCAD deficiency may rely on intramitochondrial protein quality control mechanisms, including degradation and aggregation of variant SCAD proteins. In this study we investigated the processing of a set of disease-causing variant SCAD proteins (R22W, G68C, W153R, R359C, and Q341H) and two common variant proteins (R147W and G185S) that lead to reduced SCAD activity. All SCAD proteins, including the wild type, associate with mitochondrial hsp60 chaperonins; however, the variant SCAD proteins remained associated with hsp60 for prolonged periods of time. Biogenesis experiments at two temperatures revealed that some of the variant proteins (R22W, G68C, W153R, and R359C) caused severe misfolding, whereas others (R147W, G185S, and Q341H) exhibited a less severe temperature-sensitive folding defect. Based on the magnitude of in vitro defects, these SCAD proteins are characterized as folding-defective variants and mild folding variants, respectively. Pulse-chase experiments demonstrated that the variant SCAD proteins either triggered proteolytic degradation by mitochondrial proteases or, especially at elevated temperature, aggregation of non-native conformers. The latter finding may indicate that accumulation of aggregated SCAD proteins may play a role in the pathogenesis of SCAD deficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号