首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3384篇
  免费   302篇
  国内免费   1篇
  2023年   24篇
  2022年   66篇
  2021年   123篇
  2020年   64篇
  2019年   81篇
  2018年   113篇
  2017年   82篇
  2016年   123篇
  2015年   214篇
  2014年   219篇
  2013年   246篇
  2012年   285篇
  2011年   275篇
  2010年   158篇
  2009年   132篇
  2008年   183篇
  2007年   161篇
  2006年   147篇
  2005年   142篇
  2004年   131篇
  2003年   125篇
  2002年   119篇
  2001年   39篇
  2000年   35篇
  1999年   39篇
  1998年   24篇
  1997年   19篇
  1996年   21篇
  1995年   19篇
  1994年   20篇
  1993年   9篇
  1992年   14篇
  1991年   17篇
  1990年   20篇
  1989年   15篇
  1988年   10篇
  1987年   10篇
  1986年   11篇
  1985年   14篇
  1984年   14篇
  1983年   6篇
  1982年   11篇
  1981年   13篇
  1980年   11篇
  1979年   13篇
  1978年   9篇
  1977年   7篇
  1975年   11篇
  1973年   6篇
  1972年   6篇
排序方式: 共有3687条查询结果,搜索用时 31 毫秒
1.
2.
3.
The 10-subunit RNA exosome is involved in a large number of diverse RNA processing and degradation events in eukaryotes. These reactions are carried out by the single catalytic subunit, Rrp44p/Dis3p, which is composed of three parts that are conserved throughout eukaryotes. The exosome is named for the 3′ to 5′ exoribonuclease activity provided by a large C-terminal region of the Rrp44p subunit that resembles other exoribonucleases. Rrp44p also contains an endoribonuclease domain. Finally, the very N-terminus of Rrp44p contains three Cys residues (CR3 motif) that are conserved in many eukaryotes but have no known function. These three conserved Cys residues cluster with a previously unrecognized conserved His residue in what resembles a metal-ion-binding site. Genetic and biochemical data show that this CR3 motif affects both endo- and exonuclease activity in vivo and both the nuclear and cytoplasmic exosome, as well as the ability of Rrp44p to associate with the other exosome subunits. These data provide the first direct evidence that the exosome-Rrp44p interaction is functionally important and also provides a molecular explanation for the functional defects when the conserved Cys residues are mutated.  相似文献   
4.
Ascidians, along with other urochordates, are the most evolutionarydistant group from vertebrates to display definitive chordate-specificcharacters, such as a notochord, dorsal hollow nerve cord, pharynxand endostyle. Most solitary ascidians have a biphasic lifehistory that has partitioned the development of these charactersbetween a planktonic microscopic tadpole larva (notochord anddorsal nerve cord) and a larger sessile adult (pharynx and endostyle).Very little is known of the molecular axial patterning processesoperating during ascidian postlarval development. Two axialpatterning homeobox genes Otx and Cdx are expressed in a spatiallyrestricted manner along the ascidian anteroposterior axis duringembryogenesis and postlarval development (i.e., metamorphosis).Comparisons of these patterns with those of homologous cephalochordateand vertebrate genes suggest that the novel ascidian biphasicbody plan was not accompanied by a deployment of these genesinto new pathways but by a heterochronic shift in tissue-specificexpression. Studies examining the role of all-trans retinoicacid (RA) in axial patterning in chordates also contribute toour understanding of the role of homeobox genes in the developmentof larval and adult ascidian body plans. Our studies demonstratethat RA does not regulate axial patterning in the developingascidian larval neuroaxis in a manner homologous to that foundin vertebrates. Although RA may regulate the expression of someascidian homeobox genes, ectopic application of RA does notappear to alter the morphology of the larval CNS. However, treatmentwith similar or lower concentrations of RA, have a profoundeffect on postlarval development and the juvenile body plan.These changes are correlated to a dramatic reduction of Otxexpression. Through these RA-induced effects we infer that whileRA may regulate the expression of some homeobox genes duringembryogenesis it has a far more dramatic impact on postlarvaldevelopment where regulative processes predominate.  相似文献   
5.
It is postulated that accumulation of malaria-infected Red Blood Cells (iRBCs) in the liver could be a parasitic escape mechanism against full destruction by the host immune system. Therefore, we evaluated the in vivo mechanism of this accumulation and its potential immunological consequences. A massive liver accumulation of P. c. chabaudi AS-iRBCs (Pc-iRBCs) was observed by intravital microscopy along with an over expression of ICAM-1 on day 7 of the infection, as measured by qRT-PCR. Phenotypic changes were also observed in regulatory T cells (Tregs) and dendritic cells (DCs) that were isolated from infected livers, which indicate a functional role for Tregs in the regulation of the liver inflammatory immune response. In fact, the suppressive function of liver-Tregs was in vitro tested, which demonstrated the capacity of these cells to suppress naive T cell activation to the same extent as that observed for spleen-Tregs. On the other hand, it is already known that CD4+ T cells isolated from spleens of protozoan parasite-infected mice are refractory to proliferate in vivo. In our experiments, we observed a similar lack of in vitro proliferative capacity in liver CD4+ T cells that were isolated on day 7 of infection. It is also known that nitric oxide and IL-10 are partially involved in acute phase immunosuppression; we found high expression levels of IL-10 and iNOS mRNA in day 7-infected livers, which indicates a possible role for these molecules in the observed immune suppression. Taken together, these results indicate that malaria parasite accumulation within the liver could be an escape mechanism to avoid sterile immunity sponsored by a tolerogenic environment.  相似文献   
6.
7.
Abstract: This study focuses on the sex ratio and spatial distribution of males and females in three populations of the endemic and restricted tropical dioecious shrub, Baccharis concinna (Asteraceae) in the mountainous region of Serra do Cipó, southeastern Brazil. The proportion of female plants in the population at lower elevation (1000 m a.s.l.) was significantly greater than of male plants. At this elevation of P/N and Ca/Al ratios in the soil were also greater indicating better nutritional status of the soils. The concentration of aluminium increased significantly with the elevation ( p < 0.001), perhaps rendering soils less conducive to female plants at higher elevations. Female plants are possibly adversely affected to a greater extent by soil quality than male plants. The spatial distribution of the populations within habitat was tested by the K(t) function, where the neighbourhood of a given individual was defined by a circle with a radius (t) up to 3 m. Despite the strong tendency for aggregation, the distribution of the sexes within habitats was random and the hypothesis was not supported. The independent distribution of the sexes within habitats may be explained by nutrient homogeneity of the soils, as well as by an absence of antagonism between the sexes. Nevertheless, we found a trend for males and females to be aggregated according to their gender.  相似文献   
8.
We sought to establish whether the endogenous opiate-receptor agonist Met-enkephalin (m-ENK) selectively modulates the release of endogenous tyrosine (Tyr) from brain slices prepared from the corpus striatum (CS). Amino acids (AAs) released from slices of CS and, for comparison, cerebral cortex (Cx) were measured by HPLC. Incubation of slices with m-ENK (1-10 microM) increased the basal release of Tyr (up to 293% of control) from CS, but not Cx, whereas other nonneurotransmitter AAs, phenylalanine (Phe) and valine (Val), were unchanged. The release of the putative neurotransmitter AAs glutamate (Glu), taurine (Tau), and glycine (Gly) were similarly increased by 50-150% with m-ENK in slices of CS, but not Cx. The enhanced release of AAs by m-ENK was prevented by removal of extracellular Ca2+ or by preincubation with the opiate receptor antagonist naloxone. Neuronal depolarization by potassium (5-55 mM) in the presence of Ca2+ did not affect the release of Tyr, whereas release of neurotransmitter AAs such as gamma-aminobutyric acid (GABA) were markedly increased. The increase in basal Tyr release by m-ENK was not the result of a decreased uptake of Tyr. Relative to slices, the basal release of Tyr, Phe, and Val from a synaptosomal (P2) preparation of CS was small (8-51%) compared to that of GABA, Gly, Glu, and Tau (49-123%). Nonetheless, m-ENK (10 microM) markedly increased the release of Tyr (to 833%), but not Glu, Gly, and Tau from the P2 fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
The levels of intramolecular plasmid recombination, following transfection of a plasmid substrate for homologous recombination into normal and immortally transformed cells, have been examined by two independent assays. In the first assay, recovered plasmid was tested for DNA rearrangements which regenerate a functional neomycin resistance gene from two overlapping fragments. Following transformation of bacteria, frequencies of recombinationlike events were determined from the ratio of neomycin-resistant (recombinant) colonies to ampicillin-resistant colonies (indicating total plasmid recovery). Such events, yielding predominantly deletions between the directly repeated sequences, were substantially more frequent in five immortal cell lines than in any of three normal diploid cell strains tested. Effects of plasmid replication or interaction with T antigen and of bacterially mediated rejoining of linear molecules generated in mammalian cells were excluded by appropriate controls. The second assay used limited coamplification of a control segment of plasmid DNA, and of the predicted recombinant DNA region, primed by two sets of flanking oligonucleotides. Each amplified band was quantitated by reference to a near-linear standard curve generated concurrently, and recombination frequencies were determined from the ratio of recombinant/control DNA regions. The results confirmed that recombinant DNA structures were generated within human cells at direct repeats in the transfected plasmid and were markedly more abundant in an immortal cell line than in the diploid normal cells from which that line was derived.  相似文献   
10.
Methane monooxygenase (MMO) is the enzyme responsible for the conversion of methane to methanol in methanotrophic bacteria. In addition, this enzyme complex oxidizes a wide range of aliphatic and aromatic compounds in a number of potentially useful biotransformations. In this study, we have used biochemical data obtained from purification and characterization of the soluble MMO from Methylococcus capsulatus (Bath), to identify structural genes encoding this enzyme by oligonucleotide probing. The genes encoding the and subunits of MMO were found to be chromosomally located and were linked in this organism. We report here on the analysis of a recombinant plasmid containing 12 kilobases of Methylococcus DNA and provide the first evidence for the localization and linkage of genes encoding the methane monooxygenase enzyme complex. DNA sequence analysis suggests that the primary structures of the and subunit of MMO are completely novel and the complete sequence of these genes is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号