首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1992年   1篇
  1985年   1篇
排序方式: 共有41条查询结果,搜索用时 46 毫秒
1.
The effect of a natural sesquiterpene ketone, 9,10‐dehydrofukinone (DHF), on pathogenic Staphylococcus aureus and Pseudomonas aeruginosa strains isolated from chronic infectious processes, was the focus of the present study. Lipophilic DHF produced important antibacterial synergistic effects in association with ciprofloxacin (CPX) against two biofilm‐forming strains of S. aureus HT1 (FIC=0.21) and P. aeruginosa HT5 (FIC=0.05). Hence, this mixture constitutes an excellent strategy to combat these biofilm‐producing bacteria that overexpress drug efflux pumps as a resistance mechanism. Additionally, a substantial rise in beneficial Lactobacillus biofilm biomass was determined as a very significant finding of this association. Particularly, a non‐pathogenic biofilm increment of 119 % was quantified when the mixture was added to a probiotic L. acidophilus ATCC SD‐5212 culture. A surface activity enhanced in 71 % with respect to untreated L. acidophilus culture was also generated by the DHF and CPX association, and therefore, a glycoprotein synthesis induction mediated by the mixture is discussed. The results obtained could help in the development of new selective antibiotics. From an ecological standpoint, the present study strongly suggests that DHF is a polyfunctional organic molecule produced with a high yield in Senecio punae that exerts a positive impact on a non‐pathogenic plant bacterium L. plantarum CE105.  相似文献   
2.
Ciliate protozoa are important members of microbial communities in which they play specific ecological roles. The determination of single species distribution is fundamental for food web analysis, but species recognition, which is mainly based on morphological characters, is often difficult between closely related species. The use of species-specific, purposely designed, fluorescently labeled probes for in situ hybridization is here presented as an easy and fast identification method for three closely related species belonging to the widespread genus Euplotes, namely E. crassus, E. vannus, and E. minuta, that in spite of their remarkable morphological similarity have significant metabolic and ecological differences. These three species can be detected simultaneously, provided the probes employed are bound to different fluorescent dyes: in this way their relative abundance and their population dynamics in the natural environment can be evaluated. As more ciliate sequences become available in databases, species-specific probes can be designed for other ciliates, thus rendering the application of the method of more general importance. The probes used in this study may also provide a tool to prevent erroneous species identification in future studies.  相似文献   
3.
Biological nitrogen fixation in legumes occurs in nodules that are initiated in the root cortex following Nod factor recognition at the root surface, and this requires coordination of diverse developmental programs in these different tissues. We show that while early Nod factor signaling associated with calcium oscillations is limited to the root surface, the resultant activation of Nodule Inception (NIN) in the root epidermis is sufficient to promote cytokinin signaling and nodule organogenesis in the inner root cortex. NIN or a product of its action must be associated with the transmission of a signal between the root surface and the cortical cells where nodule organogenesis is initiated. NIN appears to have distinct functions in the root epidermis and the root cortex. In the epidermis, NIN restricts the extent of Early Nodulin 11 (ENOD11) expression and does so through competitive inhibition of ERF Required for Nodulation (ERN1). In contrast, NIN is sufficient to promote the expression of the cytokinin receptor Cytokinin Response 1 (CRE1), which is restricted to the root cortex. Our work in Medicago truncatula highlights the complexity of NIN action and places NIN as a central player in the coordination of the symbiotic developmental programs occurring in differing tissues of the root that combined are necessary for a nitrogen-fixing symbiosis.  相似文献   
4.
The Polynucleobacter-Euplotes association is an obligatory symbiotic system between a monophyletic group of ciliate species belonging to the genus Euplotes and bacteria of the species Polynucleobacter necessarius (Betaproteobacteria). Both organisms are unable to survive independently. Several studies revealed the existence of free-living populations of Polynucleobacter bacteria which are phylogenetically closely related to the endosymbiotic ones, but never share associations with Euplotes in the natural environment. Hence, following the most parsimonious explanation on the origin of the association, this symbiosis should represent a synapomorphic character for the hosts' clade. Nevertheless, phylogenetic analyses performed on an increased number of strains here presented suggest that Euplotes species, during their evolution, recruited Polynucleobacter bacteria as symbionts more than once. Moreover, in three cases, we observed different bacteria as obligate symbionts. These symbionts are the first characterized representatives of a phylogenetic lineage branching in a basal position with respect to the genus Polynucleobacter. The hypothesis that the original obligate symbionts belonged to this newly discovered clade and that, only subsequently, in most cases they have been replaced by Polynucleobacter bacteria recruited from the environment is proposed and discussed. The evolutionary path of this association seems anyway to have been more complex than so far supposed.  相似文献   
5.
In leather tanning industrial areas sulphide management represents a major problem. However, biological sulphide oxidation to sulphur represents a convenient solution to this problem. Elemental sulphur is easy to separate and the process is highly efficient in terms of energy consumption and effluent quality. As the oxidation process is performed by specialized bacteria, selection of an appropriate microbial community is fundamental for obtaining a good yield. Sulphur oxidizing bacteria (SOB) represent a wide-ranging and highly diversified group of microorganisms with the capability of oxidizing reduced sulphur compounds. Therefore, it is useful to select new microbes that are able to perform this process efficiently. For this purpose, an experimental membrane bioreactor for sulphide oxidation was set up, and the selected microbial community was characterized by constructing 16S rRNA gene libraries and subsequent screening of clones. Fluorescence in situ hybridization (FISH) was then used to assess the relative abundance of different bacterial groups. Sulphide oxidation to elemental sulphur proceeded in an efficient (up to 79% conversion) and stable way in the bioreactor. Both analysis of clone libraries and FISH experiments revealed that the dominant operational taxonomic unit (OTU) in the bioreactor was constituted by Gammaproteobacteria belonging to the Halothiobacillaceae family. FISH performed with the specifically designed probe tios_434 demonstrated that this OTU constituted 90.6+/-1.3% of the bacterial community. Smaller fractions were represented by bacteria belonging to the classes Betaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Clostridia, Mollicutes, Sphingobacteria, Bacteroidetes and Chlorobia. Phylogenetic analysis revealed that clone sequences from the dominant OTU formed a stable clade (here called the TIOS44 cluster), within the Halothiobacillaceae family, with sequences from many organisms that have not yet been validly described. The data indicated that bacteria belonging to the TIOS44 cluster were responsible for the oxidation process.  相似文献   
6.
Francisella are facultative intracellular bacteria causing severe disease in a broad range of animals. Two species are notable: Francisella tularensis, the causative organism of tularemia and a putative warfare agent, and Francisella noatunensis, an emerging fish pathogen causing significant losses in wild and farmed fish. Although various aspects of Francisella biology have been intensively studied, their natural reservoir in periods between massive outbreaks remains mysterious. Protists have been suspected to serve as a disguised vector of Francisella and co-culturing attempts demonstrate that some species are able to survive and multiply within protozoan cells. Here, we report the first finding of a natural occurrence of Francisella sp. as a protist endosymbiont. By molecular and morphological approaches, we identified intracellular bacteria localized in a strain of the marine ciliate Euplotes raikovi, isolated from the coast of Adriatic Sea. Phylogenetic analysis placed these endosymbionts within the genus Francisella, in close but distinct association with F. noatunensis. We suggest the establishment of a novel subspecies within F. noatunensis and propose the cytoplasmatic endosymbiont of E. raikovi as “Candidatus F. noatunensis subsp. endociliophora” subsp. nov.  相似文献   
7.
8.
9.
10.
Summary Epixenosomes live on the dorsal surface of their ciliate host,Euplotidium itoi. They lack a nuclear envelope and divide like prokaryotes. On the other hand they have a morphological and functional cell compartmentalization and possess tubules that are sensible to tubulin inhibitors and positively react with different antitubulin antibodies. In the present paper, as a first step to investigate their real nature, the in situ hybridization technique was applied at the ultrastructural level. Different prokaryotic and eukaryotic probes suitable for detecting rRNA genes were used. An additional test was performed with the gene encoding for tubulin in the ciliateEuplotes crassus. Positive results, evidenced by a precise localization of gold particles, were obtained with all the eukaryotic probes used. These probes were obtained from organisms belonging to three different kingdoms (Protista, Animalia, Plantae). On the contrary, no hybridization was obtained with prokaryotic probes, not even when the probe used was an oligonucleotide complementary to all bacterial 16S rRNA so far sequenced. On the basis of these results and of the other observations so far accumulated, the possible eukaryotic nature of epixenosomes is discussed.Abbreviations BSA bovine serum albumin - DZ dome-shaped zone - EDTA ethylenediaminetetracetic acid - PCR polymerase chain reaction - SEM scanning electron microscope - UV ultraviolet  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号