首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   9篇
  国内免费   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2015年   5篇
  2014年   6篇
  2013年   3篇
  2012年   10篇
  2011年   8篇
  2010年   10篇
  2009年   10篇
  2008年   12篇
  2007年   15篇
  2006年   11篇
  2005年   8篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1989年   3篇
  1987年   2篇
  1984年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
1.
We have cloned the AMO gene, encoding the microbody matrix enzyme amine oxidase (EC 1.4.3.6) from the yeast Hansenula polymorpha. The gene was isolated by differential screening of a cDNA library, immunoselection, and subsequent screening of a H. polymorpha genomic library. The nucleotide sequence of a 3.6 kilobase stretch of DNA containing the amine oxidase (AMO) gene was determined. The AMO gene contains an open reading frame of 692 amino acids, with a relative molecular mass of 77,435. The 5' and 3' ends of the gene were mapped and show that the transcribed region measures 2134 nucleotides. The derived amino-acid sequence was confirmed by sequencing an internal proteolytic fragment of the purified protein. Amine oxidase contains the tripeptide sequence Ser-Arg-Leu, located 9 residues from the carboxy terminus, which may represent the topogenic signal for protein import into microbodies.  相似文献   
2.
Intramolecular electron redistribution in cytochrome c oxidase after photolysis of the partially reduced CO-bound enzyme was followed at a number of different wavelengths by absorption spectroscopy. Spectra were constructed for the first two phases of this process. The first phase (tau = 3 microseconds) has a spectrum essentially identical to the difference between the Fea and Fea3 reduced-minus-oxidized spectra, indicating a 1:1 stoichiometry between the amount of Fea3 oxidized and Fea reduced. It is not necessary to invoke reduction or oxidation of other redox carriers in this phase. The second phase (tau = 35 microseconds) spectrum appears to be a linear combination of the Fea3 and Fea reduced-minus-oxidized difference spectra, reflecting the oxidation of four parts of Fea3 for every part of Fea oxidized. This process can be described in terms of transfer to CuA of electrons from the Fea3<==>Fea equilibrium system established in the first phase. The relative contributions of Fea3 and Fea in the second phase allow us to calculate the equilibrium constant for Fea3<==>Fea electron exchange, which yields a delta Em of 36 mV for the two centers (Fea3 more positive). Together with the apparent rate constant for the fast phase, this equilibrium constant yields, in turn, the forward (kf) and reverse (kr) rates for electron transfer from Fea to Fea3 as follows: kf = 2.4 x 10(5) s-1 and kr = 6 x 10(4) s-1. kf is much faster than any observed step in the reaction of the reduced enzyme with O2. Thus, the catalytic mechanism of O2 reduction to water is not rate-limited by electron transfer from Fea to the binuclear Fea3/Cu(B) site.  相似文献   
3.
The relationship between intracellular lysosomal rupture and cell death caused by silica was studied in P388d(1) macrophages. After 3 h of exposure to 150 μg silica in medium containing 1.8 mM Ca(2+), 60 percent of the cells were unable to exclude trypan blue. In the absence of extracellular Ca(2+), however, all of the cells remained viable. Phagocytosis of silica particles occurred to the same extent in the presence or absence of Ca(2+). The percentage of P388D(1) cells killed by silica depended on the dose and the concentration of Ca(2+) in the medium. Intracellular lyosomal rupture after exposure to silica was measured by acridine orange fluorescence or histochemical assay of horseradish peroxidase. With either assay, 60 percent of the cells exposed to 150 μg silica for 3 h in the presence of Ca(2+) showed intracellular lysosomal rupture, was not associated with measureable degradation of total DNA, RNA, protein, or phospholipids or accelerated turnover of exogenous horseradish peroxidase. Pretreatment with promethazine (20 μg/ml) protected 80 percent of P388D(1) macrophages against silica toxicity although lysosomal rupture occurred in 60-70 percent of the cells. Intracellular lysosomal rupture was prevented in 80 percent of the cells by pretreatment with indomethacin (5 x 10(-5)M), yet 40-50 percent of the cells died after 3 h of exposure to 150 μg silica in 1.8 mM extracellular Ca(2+). The calcium ionophore A23187 also caused intracellular lysosomal rupture in 90-98 percent of the cells treated for 1 h in either the presence or absence of extracellular Ca(2+). With the addition of 1.8 mM Ca(2+), 80 percent of the cells was killed after 3 h, whereas all of the cells remained viable in the absence of Ca(2+). These experiments suggest that intracellular lysosomal rupture is not causally related to the cell death cause by silica or A23187. Cell death is dependent on extracellular Ca(2+) and may be mediated by an influx of these ions across the plasma membrane permeability barrier damaged directly by exposure to these toxins.  相似文献   
4.

Introduction

Osteoarthritis (OA) is associated with the metabolic syndrome, however the underlying mechanisms remain unclear. We investigated whether low density lipoprotein (LDL) accumulation leads to increased LDL uptake by synovial macrophages and affects synovial activation, cartilage destruction and enthesophyte/osteophyte formation during experimental OA in mice.

Methods

LDL receptor deficient (LDLr−/−) mice and wild type (WT) controls received a cholesterol-rich or control diet for 120 days. Experimental OA was induced by intra-articular injection of collagenase twelve weeks after start of the diet. OA knee joints and synovial wash-outs were analyzed for OA-related changes. Murine bone marrow derived macrophages were stimulated with oxidized LDL (oxLDL), whereupon growth factor presence and gene expression were analyzed.

Results

A cholesterol-rich diet increased apolipoprotein B (ApoB) accumulation in synovial macrophages. Although increased LDL levels did not enhance thickening of the synovial lining, S100A8 expression within macrophages was increased in WT mice after receiving a cholesterol-rich diet, reflecting an elevated activation status. Both a cholesterol-rich diet and LDLr deficiency had no effect on cartilage damage; in contrast, ectopic bone formation was increased within joint ligaments (fold increase 6.7 and 6.1, respectively). Moreover, increased osteophyte size was found at the margins of the tibial plateau (4.4 fold increase after a cholesterol-rich diet and 5.3 fold increase in LDLr−/− mice). Synovial wash-outs of LDLr−/− mice and supernatants of macrophages stimulated with oxLDL led to increased transforming growth factor-beta (TGF-β) signaling compared to controls.

Conclusions

LDL accumulation within synovial lining cells leads to increased activation of synovium and osteophyte formation in experimental OA. OxLDL uptake by macrophages activates growth factors of the TGF-superfamily.  相似文献   
5.

Pearl millet downy mildew (DM) incidence, severity and yield losses of two pearl millet varieties (local and improved) due to the disease were determined in the field. Significant differences in the disease incidence and severity were recorded in the plots sown with metalaxyl-treated seeds and those sown with non-treated seeds, indicating the efficacy of the fungicide on the fungus. Yield losses due to non-treatment of seeds with metalaxyl was 40.88 and 45.39% in a local variety and 43.00 and 18.60% in an improved variety in the 2000 and 2001 cropping seasons respectively. Significant differences between plots sown with metalaxyl-treated and those sown with non-treated seeds were obtained for other yield components such as 1000-grains weight, panicle length and weight.  相似文献   
6.
Cytochrome c oxidase (CytcO) is a redox-driven, membrane-bound proton pump. One of the proton transfer pathways of the enzyme, the D pathway, used for the transfer of both substrate and pumped protons, accommodates a network of hydrogen-bonded water molecules that span the distance between an aspartate (Asp(132)), near the protein surface, and glutamate Glu(286), which is an internal proton donor to the catalytic site. To investigate how changes in the environment around Glu(286) affect the mechanism of proton transfer through the pathway, we introduced a non-hydrogen-bonding (Ala) or an acidic residue (Asp) at position Ser(197) (S197A or S197D), located approximately 7 A from Glu(286). Although Ser(197) is hydrogen-bonded to a water molecule that is part of the D pathway "proton wire," replacement of the Ser by an Ala did not affect the proton transfer rate. In contrast, the S197D mutant CytcO displayed a turnover activity of approximately 35% of that of the wild-type CytcO, and the O(2) reduction reaction was not linked to proton pumping. Instead, a fraction of the substrate protons was taken from the positive ("incorrect") side of the membrane. Furthermore, the pH dependence of the proton transfer rate was altered in the mutant CytcO. The results indicate that there is plasticity in the water coordination of the proton pathway, but alteration of the electrostatic potential within the pathway results in uncoupling of the proton translocation machinery.  相似文献   
7.
The sequence of the catalytic intermediates in the reaction of cytochrome bd terminal oxidases from Escherichia coli and Azotobacter vinelandii with oxygen was monitored in real time by absorption spectroscopy and electrometry. The initial binding of O(2) to the fully reduced enzyme is followed by the fast (5 micros) conversion of the oxy complex to a novel, previously unresolved intermediate. In this transition, low spin heme b(558) remains reduced while high spin heme b(595) is oxidized with formation of a new heme d-oxygen species with an absorption maximum at 635 nm. Reduction of O(2) by two electrons is sufficient to produce (hydro)peroxide bound to ferric heme d. In this case, the O-O bond is left intact and the newly detected intermediate must be a peroxy complex of heme d (Fe (3+)(d)-O-O-(H)) corresponding to compound 0 in peroxidases. The alternative scenario where the O-O bond is broken as in the P(M) intermediate of heme-copper oxidases and compound I of peroxidases is not very likely, because it would require oxidation of a nearby amino acid residue or the porphyrin ring that is energetically unfavorable in the presence of the reduced heme b(558) in the proximity of the catalytic center. The formation of the peroxy intermediate is not coupled to membrane potential generation, indicating that hemes d and b(595) are located at the same depth of the membrane dielectric. The lifetime of the new intermediate is 47 micros; it decays into oxoferryl species due to oxidation of low spin heme b(558) that is linked to significant charge translocation across the membrane.  相似文献   
8.
The first discernible intermediate when fully reduced cytochrome c oxidase reacts with O2 is a dioxygen adduct (compound A) of the binuclear heme iron-copper center. The subsequent decay of compound A is associated with transfer of an electron from the low-spin heme a to this center. This reaction eventually produces the ferryl state (F) of this center, but whether an intermediate state may be observed between A and F has been the subject of some controversy. Here we show, using both optical and EPR spectroscopy, that such an intermediate (P(R)) indeed exists and that it exhibits spectroscopic properties quite distinct from F. The optical spectrum of P(R) is similar or identical to the spectrum of the P(M) intermediate that is formed after compound A when two-electron-reduced enzyme reacts with O2. An unusual EPR spectrum with features of a CuB(II) ion that interacts magnetically with a nearby paramagnet [cf. Hansson, O., Karlsson, B., Aasa, R., V?nng?rd, T., and Malmstr?m, B.G (1982) EMBO J. 1, 1295-1297; Blair, D. F., Witt, S. N., and Chan, S. I. (1985) J. Am. Chem. Soc. 107, 7389-7399] can be uniquely assigned to the P(R) intermediate, not being found in either the P(M) or F intermediate. The binuclear center in the P(R) state may be assigned as having an Fe(a3)(IV)=O CuB(II) structure, as in both the P(M) and F states. The spectroscopic differences between these three intermediates are evaluated. The P(R) state has a key role as an initiator of proton translocation by the enzyme, and the thermodynamic and electrostatic bases for this are discussed.  相似文献   
9.
The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio harveyi was purified and studied by EPR and visible spectroscopy. Two EPR signals in the NADH-reduced enzyme were detected: one, a radical signal, and the other a line around g = 1.94, which is typical for a [2Fe-2S] cluster. An E(m) of -267 mV was found for the Fe-S cluster (n = 1), independent of sodium concentration. The spin concentration of the radical in the enzyme was approximately the same under a variety of redox conditions. The time course of Na+-NQR reduction by NADH indicated the presence of at least two different flavin species. Reduction of the first species (most likely, a FAD near the NADH dehydrogenase site) was very rapid in both the presence and absence of sodium. Reduction of the second flavin species (presumably, covalently bound FMN) was slower and strongly dependent on sodium concentration, with an apparent activation constant for Na+ of approximately 3.4 mM. This is very similar to the Km for Na+ in the steady-state quinone reductase reaction catalyzed by this enzyme. These data led us to conclude that the sodium-dependent step within the Na+-NQR is located between the noncovalently bound FAD and the covalently bound FMN.  相似文献   
10.
Arginine 54 in subunit I of cytochrome c oxidase from Paracoccus denitrificans interacts with the formyl group of heme a. Mutation of this arginine to methionine (R54M) dramatically changes the spectral properties of heme a and lowers its midpoint redox potential [Kannt et al. (1999) J. Biol. Chem. 274, 37974-37981; Lee et al. (2000) Biochemistry 39, 2989-2996; Riistama et al. (2000) Biochim. Biophys. Acta 1456, 1-4]. During anaerobic reduction of the mutant enzyme, a small fraction of heme a is reduced first along with heme a(3), while most of heme a is reduced later. This suggests that electron transfer is impaired thermodynamically due to the low redox potential of heme a but that it still takes place from Cu(A) via heme a to the binuclear site as in wild-type enzyme, with no detectable bypass from Cu(A) directly to the binuclear site. Consistent with this, the proton translocation efficiency is unaffected at 1 H(+)/e(-) in the mutant enzyme, although turnover is strongly inhibited. Time-resolved electrometry shows that when the fully reduced enzyme reacts with O(2), the fast phase of membrane potential generation during the P(R )()--> F transition is unaffected by the mutation, whereas the slow phase (F --> O transition) is strongly decelerated. In the 3e(-)-reduced mutant enzyme heme a remains oxidized due to its lowered midpoint potential, whereas Cu(A) and the binuclear site are reduced. In this case the reaction with O(2) proceeds via the P(M) state because transfer of the electron from Cu(A) to the binuclear site is delayed. The single phase of membrane potential generation in the 3e(-)-reduced mutant enzyme, which thus corresponds to the P(M)--> F transition, is decelerated, but its amplitude is comparable to that of the P(R)--> F transition. From this we conclude that the completely (4e(-)) reduced enzyme is fully capable of proton translocation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号