首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   16篇
  2021年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   11篇
  2014年   9篇
  2013年   7篇
  2012年   7篇
  2011年   10篇
  2010年   12篇
  2009年   7篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   12篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1993年   4篇
  1992年   9篇
  1991年   2篇
  1990年   10篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   9篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   7篇
  1976年   7篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1950年   1篇
排序方式: 共有263条查询结果,搜索用时 15 毫秒
1.
Lysosomal neuraminidase and beta-galactosidase are present in a complex together with a 32-kDa protective protein. This complex has been purified and the different components have been dissociated using potassium isothiocyanate (KSCN) treatment. beta-Galactosidase remains catalytically active, but neuraminidase loses its activity upon dissociation. The inactive dissociated neuraminidase was purified by removing the remaining non-dissociated beta-galactosidase/protective protein complex using beta-galactosidase-specific affinity chromatography. The dissociated neuraminidase material shows two major polypeptides on SDS-PAGE with an apparent molecular mass of 76 kDa and 66 kDa. Subsequently the 32-kDa protective protein was dissociated from the beta-galactosidase/protective protein complex, and purified. Antibodies raised against the dissociated inactive neuraminidase preparation specifically immunoprecipitate the active neuraminidase present in the complex with beta-galactosidase and protective protein. By immunoblotting evidence is provided that the 76-kDa protein is a subunit of neuraminidase which, in association with the 32-kDa protective protein, is essential for neuraminidase activity.  相似文献   
2.
3.
Conclusions It can be concluded that the precise localization of the epitopes on autoantigens associated with scleroderma has not been determined yet, and further subcloning experiments will be required to map the epitopes more precisely. However, the fact that the antigenicities of the C-terminal ends of topo I as well as of CENP-B are highly affected by the length of the fusion segments suggest that most, if not all, antigenic determinants on these parts of the autoantigens are conformational epitopes. Studies based upon molecular modelling of antibodies reacting with antigens suggest that over 90% of B-cell epitopes are conformational [50]. This implies that the most successful approach to allocate B-cell epitopes on autoantigens in the near future may be the use of techniques for mapping conformational epitopes. Such techniques are currently being developed [reviewed in 51]. Until now, the limited data available indicate that the B-cell epitopes on the scleroderma-associated autoantigens are distributed over the entire proteins. The C-terminal parts of the antigens seem to be good candidates for harboring the major autoimmune epitopes, but more experimental data will be necessary to confirm this suggestion.  相似文献   
4.
Inhibition of tissue-type plasminogen activator (t-PA) by pooled plasma could be ascribed for only 60% to the endothelial cell type PA inhibitor. The residual inhibition is ascribed to a so-far undescribed plasma component present at 0.2 nmol/l. This component shows reversible binding to t-PA with an apparent Ki of 10 pmol/l (does not hinder t-PA binding to fibrin); also reacts with urokinase, but not with DIP-t-PA; is stable at 37°C and does not occur in media of endothelial cells, hepatocytes and fibroblasts. This PA binding component in plasma adds to the regulation of plasminogen activator activities.

Fibrinolysis Tissue-type plasminogen activator Urokinase Blood plasma Endothelial cell type plasminogen activator inhibitor Protease inhibitor  相似文献   

5.
Levels of mitochondrial DNA (mtDNA) sequence divergence between species within each of several avian (Anas, Aythya, Dendroica, Melospiza, and Zonotrichia) and nonavian (Lepomis and Hyla) vertebrate genera were compared. An analysis of digestion profiles generated by 13-18 restriction endonucleases indicates little overlap in magnitude of mtDNA divergence for the avian versus nonavian taxa examined. In 55 interspecific comparisons among the avian congeners, the fraction of identical fragment lengths (F) ranged from 0.26 to 0.96 (F = 0.46), and, given certain assumptions, these translate into estimates of nucleotide sequence divergence (p) ranging from 0.007 to 0.088; in 46 comparisons among the fish and amphibian congeners, F values ranged from 0.00 to 0.36 (F = 0.09), yielding estimates of P greater than 0.070. The small mtDNA distances among avian congeners are associated with protein-electrophoretic distances (D values) less than approximately 0.2, while the mtDNA distances among assayed fish and amphibian congeners are associated with D values usually greater than 0.4. Since the conservative pattern of protein differentiation previously reported for many avian versus nonavian taxa now appears to be paralleled by a conservative pattern of mtDNA divergence, it seems increasingly likely that many avian species have shared more recent common ancestors than have their nonavian taxonomic counterparts. However, estimates of avian divergence times derived from mtDNA- and protein-calibrated clocks cannot readily be reconciled with some published dates based on limited fossil remains. If the earlier paleontological interpretations are valid, then protein and mtDNA evolution must be somewhat decelerated in birds. The empirical and conceptual issues raised by these findings are highly analogous to those in the long-standing debate about rates of molecular evolution and times of separation of ancestral hominids from African apes.   相似文献   
6.
Statistical methods for computing the standard errors of the branching points of an evolutionary tree are developed. These methods are for the unweighted pair-group method-determined (UPGMA) trees reconstructed from molecular data such as amino acid sequences, nucleotide sequences, restriction-sites data, and electrophoretic distances. They were applied to data for the human, chimpanzee, gorilla, orangutan, and gibbon species. Among the four different sets of data used, DNA sequences for an 895-nucleotide segment of mitochondrial DNA (Brown et al. 1982) gave the most reliable tree, whereas electrophoretic data (Bruce and Ayala 1979) gave the least reliable one. The DNA sequence data suggested that the chimpanzee is the closest and that the gorilla is the next closest to the human species. The orangutan and gibbon are more distantly related to man than is the gorilla. This topology of the tree is in agreement with that for the tree obtained from chromosomal studies and DNA-hybridization experiments. However, the difference between the branching point for the human and the chimpanzee species and that for the gorilla species and the human-chimpanzee group is not statistically significant. In addition to this analysis, various factors that affect the accuracy of an estimated tree are discussed.   相似文献   
7.
Lysosomal membrane vesicles isolated from rat liver were exploited to analyze the mechanism of glucose transport across the lysosomal membrane. Uptake kinetics of [14C]D-glucose showed a concentration-dependent saturable process, typical of carrier-mediated facilitated transport, with a Kt of about 75 mM. Uptake was unaffected by Na+ and K+ ions, membrane potentials, and proton gradients but showed an acidic pH optimum. Lowering the pH from 7.4 to 5.5 had no effect on the affinity of the carrier for the substrate but increased the maximum rate of transport about 3-fold. As inferred from the linearity of Scatchard plots, a single transport mechanism could account for the uptake of glucose under all conditions tested. As indicated by the transstimulation properties of the carrier, other neutral monohexoses, including D-galactose, D-mannose, D- and L-fucose were transported by this carrier. The transport rates and affinities of these sugars, measured by the use of their radiolabeled counterparts, were in the same range as those for D-glucose. Pentoses, sialic acid, and other acidic monosaccharides including their lactones, aminosugars, N-acetyl-hexosamines, and most L-stereoisomers, particularly those not present in mammalian tissues, were not transported by this carrier. Glucose uptake and transstimulation were inhibited by cytochalasin B and phloretin. The biochemical properties of this transporter differentiate it from other well-characterized lysosomal sugar carriers, including those for sialic acid and N-acetylhexosamines. The acidic pH optimum of this glucose transporter is a unique feature not shared with any other known glucose carrier and is consistent with its lysosomal origin.  相似文献   
8.
Summary The antigen recognized by the monoclonal antibody Ki-67 is a proliferation-related nucleolus-associated constituent used as a marker for cycling cells in tumor diagnosis. Antibody Ki-67 reacts with human proliferating cells, but not with hamster and mouse cells. Expression of the Ki-67 antigen was studied in a panel of human-rodent somatic cell hybrids. The results indicate that a gene involved in the expression of the antigen is located on chromosome 10.  相似文献   
9.
A puzzling population-genetic phenomenon widely reported in allozyme surveys of marine bivalves is the occurrence of heterozygote deficits relative to Hardy-Weinberg expectations. Possible explanations for this pattern are categorized with respect to whether the effects should be confined to protein-level assays or are genomically pervasive and expected to be registered in both protein- and DNA-level assays. Anonymous nuclear DNA markers from the American oyster were employed to reexamine the phenomenon. In assays based on the polymerase chain reaction (PCR), two DNA-level processes were encountered that can lead to artifactual genotypic scorings: (a) differential amplification of alleles at a target locus and (b) amplification from multiple paralogous loci. We describe symptoms of these complications and prescribe methods that should generally help to ameliorate them. When artifactual scorings at two anonymous DNA loci in the American oyster were corrected, Hardy-Weinberg deviations registered in preliminary population assays decreased to nonsignificant values. Implications of these findings for the heterozygote-deficit phenomenon in marine bivalves, and for the general development and use of PCR-based assays, are discussed.   相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号