首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1194篇
  免费   48篇
  国内免费   1篇
  1243篇
  2024年   5篇
  2023年   8篇
  2022年   17篇
  2021年   42篇
  2020年   15篇
  2019年   22篇
  2018年   30篇
  2017年   28篇
  2016年   52篇
  2015年   86篇
  2014年   84篇
  2013年   84篇
  2012年   132篇
  2011年   106篇
  2010年   70篇
  2009年   48篇
  2008年   67篇
  2007年   59篇
  2006年   54篇
  2005年   37篇
  2004年   51篇
  2003年   39篇
  2002年   32篇
  2001年   7篇
  2000年   2篇
  1999年   9篇
  1998年   8篇
  1997年   5篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1966年   2篇
  1965年   1篇
排序方式: 共有1243条查询结果,搜索用时 0 毫秒
1.
The enigmatic arrow worms (Chaetognatha) are marine carnivores and among the most abundant planktonic organisms. Their phylogenetic position has been heavily debated for a long time. Most recent molecular studies still provide a diverging picture and suggest arrow worms to be some kind of basal protostomes. In an effort to understand the organization of the nervous system in this clade for a broad comparison with other Metazoa we analysed the ultrastructure of the ventral nerve centre in Spadella cephaloptera by transmission electron microscopy. We were able to identify six different types of neurons in the bilateral somata clusters by means of the cytoplasmic composition (regarding the structure of the neurite and soma including the shape and eu-/heterochromatin ratio within the nucleus) as well as the size and position of these neurons. Furthermore, our study provides new insights into the neuropil composition of the ventral nerve centre and several other fine structural features. Our second goal was to examine if individually identifiable neurons are present in the ventral nerve centres of four chaetognath species, Sagitta setosa, Sagitta enflata, Pterosagitta draco, and Spadella cephaloptera. For that purpose, we processed whole mount specimens of these species for immunolocalization of RFamide-related neuropeptides and analysed them with confocal laser-scanning microscopy. Our experiments provide evidence for the interspecific homology of individual neurons in the ventral nerve centres of these four chaetognath species suggesting that the potential to generate serially arranged neurons with individual identities is part of their ground pattern.  相似文献   
2.
    
We report a selective, differential stimulus-dependent enrichment of the actin-associated protein α-actinin and of isoforms of the signaling enzyme protein kinase C (PKC) in the neutrophil cytoskeleton. Chemotactic peptide, activators of PKC, and cell adhesion all induce a significant increase in the amount of cytoskeletal α-actinin and actin. Increased association of PKCβI and βII with the cytoskeletal fraction of stimulated cells was also observed, with phorbol ester being more effective than chemotactic peptide. A fraction of phosphatase 2A was constitutively associated with the cytoskeleton independent of cell activation. None of the stimuli promoted association of vinculin or myosin II with the cytoskeleton. Phosphatase inhibitors okadaic acid and calyculin A prevented increases in cytoskeletal actin, α-actinin, and PKCβII induced by phorbol ester, suggesting the requirement for phosphatase activity in these events. Increases in cytoskeletal α-actinin and PKCβII showed differing sensitivity to agents that prevent actin polymerization (cytochalasin D, latrunculin A). Latrunculin A (1 μM) completely blocked PMA-induced increases in cytoskeletal α-actinin but reduced cytoskeletal recruitment of PKCβII only by 16%. Higher concentrations of latrunculin A (4 μM), which almost abolished the cytoskeletal actin pool, reduced cytoskeletal PKCβII by 43%. In conclusion, a selective enrichment of cytoskeletal and signaling proteins in the cytoskeleton of human neutrophils is induced by specific stimuli.  相似文献   
3.
Horses belong to the order Perissodactyla and bear the majority of their weight on their third toe; therefore, tremendous force is applied to each hoof. An inherited disease characterized by a phenotype restricted to the dorsal hoof wall was identified in the Connemara pony. Hoof wall separation disease (HWSD) manifests clinically as separation of the dorsal hoof wall along the weight-bearing surface of the hoof during the first year of life. Parents of affected ponies appeared clinically normal, suggesting an autosomal recessive mode of inheritance. A case-control allelic genome wide association analysis was performed (ncases = 15, ncontrols = 24). Population stratification (λ = 1.48) was successfully improved by removing outliers (ncontrols = 7) identified on a multidimensional scaling plot. A genome-wide significant association was detected on chromosome 8 (praw = 1.37x10-10, pgenome = 1.92x10-5). A homozygous region identified in affected ponies spanned from 79,936,024-81,676,900 bp and contained a family of 13 annotated SERPINB genes. Whole genome next-generation sequencing at 6x coverage of two cases and two controls revealed 9,758 SNVs and 1,230 indels within the ~1.7-Mb haplotype, of which 17 and 5, respectively, segregated with the disease and were located within or adjacent to genes. Additional genotyping of these 22 putative functional variants in 369 Connemara ponies (ncases = 23, ncontrols = 346) and 169 horses of other breeds revealed segregation of three putative variants adjacent or within four SERPIN genes. Two of the variants were non-coding and one was an insertion within SERPINB11 that introduced a frameshift resulting in a premature stop codon. Evaluation of mRNA levels at the proximal hoof capsule (ncases = 4, ncontrols = 4) revealed that SERPINB11 expression was significantly reduced in affected ponies (p<0.001). Carrier frequency was estimated at 14.8%. This study describes the first genetic variant associated with a hoof wall specific phenotype and suggests a role of SERPINB11 in maintaining hoof wall structure.  相似文献   
4.
The cohesin complex is required for the cohesion of sister chromatids and for correct segregation during mitosis and meiosis. Crossover recombination, together with cohesion, is essential for the disjunction of homologous chromosomes during the first meiotic division. Cohesin has been implicated in facilitating recombinational repair of DNA lesions via the sister chromatid. Here, we made use of a new temperature-sensitive mutation in the Caenorhabditis elegans SMC-3 protein to study the role of cohesin in the repair of DNA double-strand breaks (DSBs) and hence in meiotic crossing over. We report that attenuation of cohesin was associated with extensive SPO-11-dependent chromosome fragmentation, which is representative of unrepaired DSBs. We also found that attenuated cohesin likely increased the number of DSBs and eliminated the need of MRE-11 and RAD-50 for DSB formation in C. elegans, which suggests a role for the MRN complex in making cohesin-loaded chromatin susceptible to meiotic DSBs. Notably, in spite of largely intact sister chromatid cohesion, backup DSB repair via the sister chromatid was mostly impaired. We also found that weakened cohesins affected mitotic repair of DSBs by homologous recombination, whereas NHEJ repair was not affected. Our data suggest that recombinational DNA repair makes higher demands on cohesins than does chromosome segregation.  相似文献   
5.

Background  

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), an immunoglobulin (Ig)-related glycoprotein, serves as cellular receptor for a variety of Gram-negative bacterial pathogens associated with the human mucosa. In particular, Neisseria gonorrhoeae, N. meningitidis, Moraxella catarrhalis, and Haemophilus influenzae possess well-characterized CEACAM1-binding adhesins. CEACAM1 is typically involved in cell-cell attachment, epithelial differentiation, neovascularisation and regulation of T-cell proliferation, and is one of the few CEACAM family members with homologues in different mammalian lineages. However, it is unknown whether bacterial adhesins of human pathogens can recognize CEACAM1 orthologues from other mammals.  相似文献   
6.

Background

Vitamin K-antagonists (VKA) are treatment of choice and standard care for patients with venous thrombosis and thromboembolic risk. In experimental animal models as well as humans, VKA have been shown to promote medial elastocalcinosis. As vascular calcification is considered an independent risk factor for plaque instability, we here investigated the effect of VKA on coronary calcification in patients and on calcification of atherosclerotic plaques in the ApoE−/− model of atherosclerosis.

Methodology/Principal Findings

A total of 266 patients (133 VKA users and 133 gender and Framingham Risk Score matched non-VKA users) underwent 64-slice MDCT to assess the degree of coronary artery disease (CAD). VKA-users developed significantly more calcified coronary plaques as compared to non-VKA users. ApoE−/− mice (10 weeks) received a Western type diet (WTD) for 12 weeks, after which mice were fed a WTD supplemented with vitamin K1 (VK1, 1.5 mg/g) or vitamin K1 and warfarin (VK1&W; 1.5 mg/g & 3.0 mg/g) for 1 or 4 weeks, after which mice were sacrificed. Warfarin significantly increased frequency and extent of vascular calcification. Also, plaque calcification comprised microcalcification of the intimal layer. Furthermore, warfarin treatment decreased plaque expression of calcification regulatory protein carboxylated matrix Gla-protein, increased apoptosis and, surprisingly outward plaque remodeling, without affecting overall plaque burden.

Conclusions/Significance

VKA use is associated with coronary artery plaque calcification in patients with suspected CAD and causes changes in plaque morphology with features of plaque vulnerability in ApoE−/− mice. Our findings underscore the need for alternative anticoagulants that do not interfere with the vitamin K cycle.  相似文献   
7.
Initiation of the development of the anterior-posterior axis in the mouse embryo has been thought to take place only when the anterior visceral endoderm (AVE) emerges and starts its asymmetric migration. However, expression of Lefty1, a marker of the AVE, was recently found to initiate before embryo implantation. This finding has raised two important questions: are the cells that show such early, preimplantation expression of this AVE marker the real precursors of the AVE and, if so, how does this contribute to the establishment of the AVE? Here, we address both of these questions. First, we show that the expression of another AVE marker, Cer1, also commences before implantation and its expression becomes consolidated in the subset of ICM cells that comprise the primitive endoderm. Second, to determine whether the cells showing this early Cer1 expression are true precursors of the AVE, we set up conditions to trace these cells in time-lapse studies from early periimplantation stages until the AVE emerges and becomes asymmetrically displaced. We found that Cer1-expressing cells are asymmetrically located after implantation and, as the embryo grows, they become dispersed into two or three clusters. The expression of Cer1 in the proximal domain is progressively diminished, whilst it is reinforced in the distal-lateral domain. Our time-lapse studies demonstrate that this distal-lateral domain is incorporated into the AVE together with cells in which Cer1 expression begins only after implantation. Thus, the AVE is formed from both part of an ancestral population of Cerl-expressing cells and cells that acquire Cer1 expression later. Finally, we demonstrate that when the AVE shifts asymmetrically to establish the anterior pole, this occurs towards the region where the earlier postimplantation expression of Cer1 was strongest. Together, these results suggest that the orientation of the anterior-posterior axis is already anticipated before AVE migration.  相似文献   
8.
9.
  总被引:8,自引:0,他引:8  
Neutrophils, a major type of blood leukocytes, are indispensable for host defense of bacterial infections. Directed migration in a gradient of chemotactic stimuli enables these cells to rapidly find the site of infection and destroy the invading pathogens.

Chemotactic factors bind to seven-transmembrane-domain receptors and activate heterotrimeric G-proteins. Downstream of these proteins a complex interrelated signaling network is activated in human neutrophils. Stimulation of phospholipase Cβ results in activation of protein kinase C isoforms and increases in cytosolic calcium. Activation of the enzyme phosphoinositide 3-kinase results in increased production of phosphatidylinositol 3,4,5-trisphosphate and phosphatidyl 3,4-bisphosphate. In addition, small GTP-binding proteins of the Rho family, the mitogen-activated protein kinase cascade, tyrosine kinases and protein phosphatases are activated. The enzyme phosphoinositide 3-kinase and the small cytosolic GTP-binding proteins Rho and Rac emerge as key regulators of neutrophil migration. A steep internal gradient of phosphatidylinositol 3,4,5-trisphosphate, with a high concentration in the leading lamellae, is thought to regulate polarized actin polymerization and formation of protrusions, together with Rac which may be more directly involved in initiating actin reorganization. Rho may regulate localized myosin activation, tail retraction, cell body traction and dynamics of adhesion.

The impact of these different signaling pathways on reversible actin polymerization, development of polarity, reversible adhesion and migration, and the putative targets of these pathways in neutrophils, are reviewed in this article. Insight into mechanisms regulating migration of neutrophils could potentially lead to novel therapeutic strategies for counteracting chronic activation of neutrophils which leads to tissue damage.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号