首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1981年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
hBSSL and its truncated variant hBSSL-C cDNA clones were expressed inPichia pastorisusing two different signal peptides, native signal peptide and invertase signal peptide, respectively, to facilitate secretion of the recombinant proteins into the culture medium. Both recombinant proteins were secreted into the culture medium to a level of 45–50 mg/liter in shake flask cultures. Native signal peptide of hBSSL was recognized inP. pastorisand was cleaved at the same site as in humans. The level of expression of the hBSSL gene was found to be dependent on the number of its copies integrated into the host chromosome. The multicopy transformant clone was found to be very stable. When grown and induced in a fermentor, the level of accumulation of the recombinant hBSSL in the culture medium improved from 50 mg/liter in shake flask cultures to 300 mg/liter. The recombinant hBSSL purified from the culture supernatant was found to be similar to the native hBSSL in its biochemical properties except for the lectin-binding profile.  相似文献   
2.
Reactive oxygen species (ROS) mediated modulation of signal transduction pathways represent an important mechanism of cell injury and barrier dysfunction leading to the development of vascular disorders. Towards understanding the role of ROS in vascular dysfunction, we investigated the effect of diperoxovanadate (DPV), derived from mixing hydrogen peroxide and vanadate, on the activation of phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). Addition of DPV to BPAECs in the presence of .05% butanol resulted in an accumulation of [32P] phosphatidylbutanol (PBt) in a dose- and time-dependent manner. DPV also caused an increase in tyrosine phosphorylation of several protein bands (Mr 20-200 kD), as determined by western blot analysis with antiphosphotyrosine antibodies. The DPV-induced [32P] PBt-accumulation was inhibited by putative tyrosine kinase inhibitors such as genistein, herbimycin, tyrphostin and by chelation of Ca2+ with either EGTA or BAPTA, however, pretreatment of BPAECs with the inhibitor PKC bisindolylmaleimide showed minimal inhibition. Also down-regulation of PKC and , the major isotypes of PKC in BPAECs, by TPA ( 100 nM, 18 h) did not attenuate the DPV-induced PLD activation. The effects of putative tyrosine kinase and PKC inhibitors were specific as determined by comparing [32P] PBt formation between DPV and TPA. In addition to tyrosine kinase inhibitors, antioxidants such as N-acetylcysteine and pyrrolidine dithiocarbamate also attenuated DPV-induced protein tyrosine phosphorylation and PLD stimulation. These results suggest that oxidation, prevented by reduction with thiol compounds, is involved in DPV-dependent protein tyrosine phosphorylation and PLD activation.  相似文献   
3.
Even after tremendous molecular studies, early detection,more accurate and sensitive diagnosis, and prognosis of breast cancer appear to be a riddle so far. To stab the enigma, this study is designed to envisage DNA methylation signatures as cancer-specific and stage-specific biomarkers in Indian patients. Rigorous review of scattered scientific reports on aberrant DNA methylation helped us to select and analyze a potential tumor suppressor gene pair (FHIT and p16 genes) in breast cancer patients. Methylation signatures from 232 primary sporadic breast cancer patients were pinpointed by methylation-specific PCR (MSP). To increase the sensitivity, we combined both MSP and expression studies (RT-PCR and Northern blotting) in a reproducible manner. Statistical analysis illustrated that hypermethylation of FHIT gene ( p < 0.0001) and p16 gene ( p=0.04) may be used as a potential diagnostic marker to diagnose the early and locally advanced stages of breast cancer. Additionally, the study authenticates the dependency of methylation and expressional loss of p16 gene on FHIT gene silencing. This observation not only describes the severity of disease when both genes are silenced but also drives to speculate the molecular cross talk between two genes or genetic pathways dictated by them separately.  相似文献   
4.
We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8+ T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8+ T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses.The initial interest in vectors based on adeno-associated viruses (AAV) was for applications in gene therapy. Most of the initial work was with vectors derived from AAV serotype 2 (AAV2), which is one of the six initial isolates. In the first in vivo studies, several groups showed stable expression of the transgene Escherichia coli β-galactosidase following intramuscular (i.m.) injection of AAV2-LacZ without immune responses to the transgene (23, 44). The apparent tolerance of the host to AAV-encoded antigens to a variety of transgene products has been demonstrated in mice and some large animals (1, 35, 39). Several mechanisms have been proposed to explain the lack of T-cell responses following in vivo gene transfer with AAV, including ignorance (inadequate presentation of antigen), anergy, and suppression (1, 5, 18, 37).As applications of AAV vectors for in vivo gene transfer expanded, it became clear that the apparent immune privilege of AAV transgene products was not absolute. A number of examples emerged in which the host mounted vibrant T-cell responses to AAV-encoded transgene products. Several key parameters appeared to influence immunogenicity of the transgene. For example, Sarukhan et al. suggest that the subcellular localization of the protein influences the magnitude of the ensuing T-cell response after AAV gene transfer (37). The dose and route of administration of the AAV vector also contribute significantly to B- and T-cell responses to the transgene (3, 13). Wang et al. showed that inflammation at the site of AAV administration promotes antigen-specific immune responses to the transgene (47). A consistent observation has been that B-cell responses to AAV-encoded transgenes are much more intense and more consistently generated than CD8+ T-cell responses (8, 46, 51). A number of investigators have begun to explore AAV vectors as genetic vaccines against a variety of infectious and noninfectious diseases, based on the notion that it can be developed to stimulate transgene immune responses (14, 22, 26, 28, 48-50).The discovery of an expanded family of AAV capsids from human and nonhuman primates has provided an opportunity to evaluate the effects of capsid structure on vector performance. Most of this work has focused on the use of novel AAV serotypes for achieving higher levels of transgene expression for applications in gene therapy (7, 12, 36). Xin et al. recently evaluated, in mice, vectors as vaccines for human immunodeficiency virus type 1 (HIV-1) based on the original AAV isolates AAV1 to AAV6 and two novel AAVs we recently discovered, AAV7 and AAV8 (48). They showed significant capsid-dependent effects on T- and B-cell responses to HIV-1 gp160. We recently confirmed these observations and more thoroughly evaluated the quality of the CD8+ T-cell responses (26). AAV vectors of multiple serotypes encoding HIV-1 Gag were injected i.m. into mice, which all showed some level of CD8+ T-cell responses based on tetramer staining and peptide-induced gamma interferon (IFN-γ) expression. However, the quality of AAV-induced, Gag-specific T cells was substantially lower than that obtained with adenoviral vectors, based on several criteria. A majority of the tetramer-positive (Tet+) T cells were nonresponsive to antigen, and those that did respond to antigen produced low levels of IFN-γ and no interleukin-2 (IL-2). Very few memory T cells were generated, and animals primed with AAV vectors were not responsive to a boost with an adenoviral vector. However, all AAV serotypes studied did generate very high levels of antibodies to the Gag transgene product.A final issue to consider in the use of AAV as a genetic vaccine for HIV-1 is the presence of neutralizing antibodies (NAbs) to the vector due to prior AAV infections. We recently conducted an extensive screening of human populations from several continents and found high prevalence and high titers of NAbs to AAV1 and AAV2 and moderate levels of NAbs to AAV7 and -8 (4). In vivo gene transfer experiments indicate that AAV NAbs will likely impinge on vector efficacy (9, 33, 38).This study describes the creation of a novel AAV from rhesus macaque isolates, called AAVrh32.33, and its characterization as a genetic vaccine for HIV-1. AAVrh32.33 has properties unlike those of any others we have studied. We showed that vectors based on this novel capsid elicit strong CD8+ T-cell responses to reporter transgene products that are dependent on CD4+ T-cell help and dependent on signaling through CD40L and CD28 (L. E. Mays and J. M. Wilson, submitted for publication). Important to the use of this vector in the clinic is a very low incidence of NAbs to it in human populations. This study describes the development of vectors based on AAVrh32.33 as genetic vaccines.  相似文献   
5.
Diperoxovanadate (DPV), a potent tyrosine kinase activator and protein tyrosine phosphatase inhibitor, was utilized to explore bovine pulmonary artery endothelial cell barrier regulation. DPV produced dose-dependent decreases in transendothelial electrical resistance (TER) and increases in permeability to albumin, which were preceded by brief increases in TER (peak TER effect at 10-15 min). The significant and sustained DPV-mediated TER reductions were primarily the result of decreased intercellular resistance, rather than decreased resistance between the cell and the extracellular matrix, and were reduced by pretreatment with the tyrosine kinase inhibitor genistein but not by inhibition of p42/p44 mitogen-activating protein kinases. Immunofluorescent analysis after DPV challenge revealed dramatic F-actin polymerization and stress-fiber assembly and increased colocalization of tyrosine phosphoproteins with F-actin in a circumferential pattern at the cell periphery, changes that were abolished by genistein. The phosphorylation of focal adhesion and adherens junction proteins on tyrosine residues was confirmed in immunoprecipitates of focal adhesion kinase and cadherin-associated proteins in which dramatic dose-dependent tyrosine phosphorylation was observed after DPV stimulation. We speculate that DPV enhances endothelial cell monolayer integrity via focal adhesion plaque phosphorylation and produces subsequent monolayer destabilization of adherens junctions initiated by adherens junction protein tyrosine phosphorylation catalyzed by p60(src) or Src-related tyrosine kinases.  相似文献   
6.
Activation of T cells to the capsid of adeno-associated virus (AAV) serotype 2 vectors has been implicated in liver toxicity in a recent human gene therapy trial of hemophilia B. To further investigate this kind of toxicity, we evaluated T-cell responses to AAV capsids after intramuscular injection of vectors into mice and nonhuman primates. High levels of T cells specific to capsids of vectors based on AAV2 and a phylogenetically related AAV variant were detected. Vectors from other AAV clades such as AAV8 (ref. 3), however, did not lead to activation of capsid-specific T cells. Through the generation of AAV2-AAV8 hybrids and the creation of site-directed mutations, we mapped the domain that directs the activation of T cells to the RXXR motif on VP3, which was previously shown to confer binding of the virion to heparan sulfate proteoglycan (HSPG). Evaluation of natural and engineered AAV variants showed direct correlations between heparin binding, uptake into human dendritic cells (DCs) and activation of capsid-specific T cells. The role of heparin binding in the activation of CD8(+) T cells may be useful in modulating the immunogenicity of antigens and improving the safety profile of existing AAV vectors for gene therapy.  相似文献   
7.
8.
9.
Recent studies indicate that great apes and macaques chronically shed adenoviruses in the stool. Shedding of adenovirus in the stool of humans is less prevalent, although virus genomes persist in gut-associated lymphoid tissue in the majority of individual samples. Chimpanzees have high levels of broadly reactive neutralizing antibodies to adenoviruses in serum, with very low frequencies of adenovirus-specific T cells in peripheral blood. A similar situation exists in macaques; sampling of guts from macaques demonstrated adenovirus-specific T cells in lamina propria. Humans show intermediate levels of serum neutralizing antibodies, with adenovirus-specific T cells in peripheral blood of all individuals sampled and about 20% of samples from the gut, suggesting a potential role of T cells in better controlling virus replication in the gut. The overall structure of the E3 locus, which is involved in modulating the host''s response to infection, is degenerate in humans compared to that in apes, which may contribute to diminished evasion of host immunity. The impact of adenovirus persistence and immune responses should be considered when using adenoviral vectors in gene therapy and genetic vaccines.Viruses of the Adenoviridae family infect a wide range of vertebrate hosts. Adenoviruses that infect mammals belong to the genus Mastadenovirus and encompass at least seven viral species (formerly called subtypes) that infect primates (5). The molecular biology of human-derived adenoviruses has been characterized extensively for the species C group, for which human adenovirus 2 (HAdV-2) and HAdV-5 serve as prototypes (6). Adenoviruses cause a variety of nonlethal infectious diseases in humans, and lethal disseminated adenovirus infection occurs in immunosuppressed patients (6). Attempts to evaluate the pathogenesis of human adenoviruses in animal models have been difficult since most models demonstrate a very narrow permissiveness for virus replication.The natural history of adenovirus infections in humans was initially evaluated in prospective surveillance studies of family cohorts (7, 8). Self-limited respiratory illnesses in children were the most common syndromes associated with adenovirus infection, although virus was most easily detected in the stool. Excretion of virus in stool usually wanes rapidly following resolution of the infectious syndrome but is prolonged for a subset of individuals. Species C adenoviruses, which are the most prevalent in humans, can establish latency in adenoid and tonsil-derived lymphocytes (9).Adenovirus vectors have been used successfully as vaccine carriers due to their ability to elicit potent cellular and humoral immune response to the encoded transgene product. Recombinant vectors based on HAdV-5 have emerged as a potent platform for activating cytotoxic T lymphocytes against tumor and viral antigens. A problematic response of the host to HAdV-5-based vectors that was not predicted based on animal testing was observed in a clinical trial, namely, there was a paradoxical increased susceptibility to infection with human immunodeficiency virus (HIV) following vaccination with an HIV-based HAdV-5 vector in subjects with evidence of prior exposure to a natural infection with HAdV-5 (2).  相似文献   
10.
The macroscopic volume-regulated anion current (VRAC) is regulated by both intracellular and extracellular ATP, which has important implications in signaling and regulation of cellular excitability. The outwardly rectifying Cl(-) channel (ORCC) is a major contributor to the VRAC. This study investigated the effects of intracellular and extracellular ATP on the ORCCs expressed in the human cardiovascular system. With inside-out single-channel patch-clamp techniques, ORCCs were recorded from myocytes isolated from human atrium and septal ventricle and from primary cells originating from human coronary artery endothelium and human coronary artery smooth muscle. ORCCs from all of these tissues had similar biophysical properties, i.e., they were outwardly rectifying in symmetrical Cl(-) solutions, exhibited a slope conductance of approximately 90-100 pS at positive potentials and approximately 22 pS at negative potentials, and had a high open probability that was independent of voltage or time. The presence of ATP at the cytosolic face of the membrane increased the number of patches that contained functional ORCC but had no effect on gating. In contrast, "extracellular" ATP (in pipette solution) had no effect on the proportion of patches in which ORCC was detected but strongly reduced the open probability by increasing the closed dwell time. The potency order for nucleotides to affect gating was ATPgammaS > ATP = UTP > ADP > AMP, which suggests that a negatively charged phosphate group is involved in ORCC block. Our findings are consistent with a role of ORCC in the human cardiovasculature (atrium, ventricle, and coronary arteries). Regulation of ORCC by extracellular ATP suggests that this channel may have an important role in maintaining electrical activity and membrane potential under conditions in which extracellular ATP levels are elevated, such as with ATP release from nerve endings or during pathophysiological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号