首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   4篇
  49篇
  2017年   1篇
  2016年   2篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1994年   1篇
  1990年   2篇
  1985年   1篇
排序方式: 共有49条查询结果,搜索用时 0 毫秒
1.
2.
Dystroglycan is a cytoskeleton-linked extracellular matrix receptor expressed in many cell types. Dystroglycan is composed of alpha- and beta-subunits which are encoded by a single mRNA. Using a heterologous mammalian expression system, we provide the first biochemical evidence of the alpha/beta-dystroglycan precursor propeptide prior to enzymatic cleavage. This 160 kDa dystroglycan propeptide is processed into alpha- and beta-dystroglycan (120 kDa and 43 kDa, respectively). We also demonstrate that the precursor propeptide is glycosylated and that blockade of asparagine-linked (N-linked) glycosylation did not prevent the cleavage of the dystroglycan precursor peptide. However, inhibition of N-linked glycosylation results in aberrant trafficking of the alpha- and beta-dystroglycan subunits to the plasma membrane. Thus, dystroglycan is synthesized as a precursor propeptide that is post-translationally cleaved and differentially glycosylated to yield alpha- and beta-dystroglycan.  相似文献   
3.
Intrinsic protein fluorescence may interfere with the visualization of proteins after SDS-polyacrylamide electrophoresis. In an attempt to analyze tear glycoproteins in gels, we ran tear samples and stained the proteins with a glycoprotein-specific fluorescent dye. The fluorescence detected was not limited to glycoproteins. There was strong intrinsic fluorescence of proteins normally found in tears after soaking the gels in 40% methanol plus 1-10% acetic acid and, to a lesser extent, in methanol or acetic acid alone. Nanograms of proteins gave visible native fluorescence and interfere with extrinsic fluorescent dye detection. Poly-L-lysine, which does not contain intrinsically fluorescent amino acids, did not fluoresce.  相似文献   
4.
V-ATPases are membrane protein complexes that pump protons in the lumen of various subcellular compartments at the expense of ATP. Proton pumping is done by a rotary mechanism that requires a static connection between the membrane pumping domain (V(0)) and the extrinsic catalytic head (V(1)). This static connection is composed of several known subunits of the V-ATPase, but their location and topological relationships are still a matter of controversy. Here, we propose a model for the V-ATPase of Neurospora crassa on the basis of single-particle analysis by electron microscopy. Comparison of the resulting map to that of the A-ATPase from Thermus thermophilus allows the positioning of two subunits in the static connecting region that are unique to eukaryotic V-ATPases (C and H). These two subunits seem to be located on opposite sides of a semicircular arrangement of the peripheral connecting elements, suggesting a role in stabilizing the stator in V-ATPases.  相似文献   
5.
We examined sequence variation in the mitochondrial cytochrome b and NADH dehydrogenase subunit 5 genes (2,360 bp total) for 26 lions from eleven locations throughout sub-Saharan Africa. Six distinct haplotypes were observed in the combined sequences, forming two clades: the eastern and the western savannas. The Uganda-Western Kenya haplotype grouped at a basal position with the eastern clade of lions from Tsavo south to the Transvaal and Natal regions. The phylogenetic position of the haplotype from Sabi Sands in the southern part of Kruger National Park remained poorly resolved. The haplotypes found in Namibia and Botswana formed the western clade. The modest genetic variation documented here argues against taxonomic distinctions among living African lions.  相似文献   
6.
A study of bacterial surface oligosaccharides were investigated among different strains of Neisseria gonorrhoeae to correlate structural features essential for binding to the MAb 2C7. This epitope is widely expressed and conserved in gonococcal isolates, characteristics essential to an effective candidate vaccine antigen. Sample lipooligosaccharides (LOS), was prepared by a modification of the hot phenol-water method from which de-O-acetylated LOS and oligosaccharide (OS) components were analyzed by ES-MS-CID-MS and ES-MSnin a triple quadrupole and an ion trap mass spectrometer, respectively. Previously documented natural heterogeneity was apparent from both LOS and OS preparations which was admixed with fragments induced by hydrazine and mild acid treatment. Natural heterogeneity was limited to phosphorylation and antenni extensions to the alpha-chain. Mild acid hydrolysis to release OS also hydrolyzed the beta(1-->6) glycosidic linkage of lipid A. OS structures were determined by collisional and resonance excitation combined with MS and multistep MSn which provided sequence information from both neutral loss, and nonreducing terminal fragments. A comparison of OS structures, with earlier knowledge of MAb binding, enzyme treatment, and partial acid hydrolysis indicates a generic overlapping domain for 2C7 binding. Reoccurring structural features include a Hepalpha(1-->3)Hepbeta(1-->5)KDO trisaccharide core branched on the nonreducing terminus (Hep-2) with an alpha(1-->2) linked GlcNAc (gamma-chain), and an alpha-linked lactose (beta-chain) residue. From the central heptose (Hep-1), a beta(1-->4) linked lactose (alpha-chain), moiety is required although extensions to this residue appear unnecessary.   相似文献   
7.
The sarcoglycans are known as an integral subcomplex of the dystrophin glycoprotein complex, the function of which is best characterized in skeletal muscle in relation to muscular dystrophies. Here we demonstrate that the white adipocytes, which share a common precursor with the myocytes, express a cell-specific sarcoglycan complex containing β-, δ-, and ϵ-sarcoglycan. In addition, the adipose sarcoglycan complex associates with sarcospan and laminin binding dystroglycan. Using multiple sarcoglycan null mouse models, we show that loss of α-sarcoglycan has no consequence on the expression of the adipocyte sarcoglycan complex. However, loss of β- or δ-sarcoglycan leads to a concomitant loss of the sarcoglycan complex as well as sarcospan and a dramatic reduction in dystroglycan in adipocytes. We further demonstrate that β-sarcoglycan null mice, which lack the sarcoglycan complex in adipose tissue and skeletal muscle, are glucose-intolerant and exhibit whole body insulin resistance specifically due to impaired insulin-stimulated glucose uptake in skeletal muscles. Thus, our data demonstrate a novel function of the sarcoglycan complex in whole body glucose homeostasis and skeletal muscle metabolism, suggesting that the impairment of the skeletal muscle metabolism influences the pathogenesis of muscular dystrophy.Muscle fat infiltration is recognized as a hallmark pathological feature in dystrophin glycoprotein complex (DGC)3-related muscular dystrophies (1) that include dystrophinopathies (2, 3) and sarcoglycanopathies (LGMD2C-F) (4). In agreement, magnetic resonance imaging measurements of fat infiltration allow accurate assessments of disease severity in Duchenne muscular dystrophy patients (3). Association of adipose tissue development with degenerative/regenerative or atrophic changes in skeletal muscle is also supported by the finding that adipogenesis-competent cells within the skeletal muscle are activated during muscle regeneration (5). However, the molecular mechanism(s) underlying muscle fatty metamorphosis remain unclear.Ectopic fat deposition in skeletal muscles is primarily described in animals and humans with lipodystrophy and sarcopenia. In these conditions, the accumulation of lipids and adipocytes in skeletal muscle is often accompanied by hyperglycemia and insulin resistance (611), both of which are strong indicators of muscle metabolic defects (12, 13) and deregulated adipogenesis (14). Furthermore, both adipose-derived and muscle-derived stem cells differentiate into adipocytes upon exposure to high levels of glucose (15), linking impaired muscle metabolism with muscle fat deposition.It is long held that the biogenesis of a basement membrane takes place in the earliest steps of adipogenesis and that extensive extracellular matrix (ECM) remodeling occurs throughout adipogenesis (16, 17). The concept that cell surface receptors play a role in the regulation of adipogenesis and thus may underlie metabolic disorders just recently emerged with a study of the integrin complexes (18). Given that the DGC in its capacity as an ECM receptor is critical for muscle integrity (19, 20) and that white adipocytes and skeletal muscle cells originate from the same mesenchymal precursor cells (21, 22), we set out to determine whether components of the skeletal muscle DGC are expressed in white adipocytes. Herein, we describe a unique adipose sarcoglycan (SG) complex that includes β-, δ-, and ϵ-SG. This complex is tightly associated with sarcospan (Sspn) and dystroglycan (DG). Moreover, we show that DG functions as a novel ECM receptor in white adipocytes. Because adipose tissue and skeletal muscle play critical roles in the maintenance of normal glucose homeostasis and whole body insulin sensitivity (23), we examined the metabolic consequences of the SG complex disruption in both adipose tissue and skeletal muscle. Using in vivo approaches, we observed that the β-SG null mouse (24), a mouse model of muscular dystrophy, is glucose-intolerant and exhibits whole body insulin resistance specifically due to impaired insulin-stimulated glucose uptake in skeletal muscle.  相似文献   
8.
Many structural, signaling, and adhesion molecules contain tandemly repeated amino acid motifs. The alpha-actinin/spectrin/dystrophin superfamily of F-actin-crosslinking proteins contains an array of triple alpha-helical motifs (spectrin repeats). We present here the complete sequence of the novel beta-spectrin isoform beta(Heavy)- spectrin (beta H). The sequence of beta H supports the origin of alpha- and beta-spectrins from a common ancestor, and we present a novel model for the origin of the spectrins from a homodimeric actin-crosslinking precursor. The pattern of similarity between the spectrin repeat units indicates that they have evolved by a series of nested, nonuniform duplications. Furthermore, the spectrins and dystrophins clearly have common ancestry, yet the repeat unit is of a different length in each family. Together, these observations suggest a dynamic period of increase in repeat number accompanied by homogenization within each array by concerted evolution. However, today, there is greater similarity of homologous repeats between species than there is across repeats within species, suggesting that concerted evolution ceased some time before the arthropod/vertebrate split. We propose a two-phase model for the evolution of the spectrin repeat arrays in which an initial phase of concerted evolution is subsequently retarded as each new protein becomes constrained to a specific length and the repeats diverge at the DNA level. This evolutionary model has general applicability to the origins of the many other proteins that have tandemly repeated motifs.   相似文献   
9.
10.
The vacuolar (H+)-ATPase (or V-ATPase) is a membrane protein complex that is structurally related to F1 and F0 ATP synthases. The V-ATPase is composed of an integral domain (V0) and a peripheral domain (V1) connected by a central stalk and up to three peripheral stalks. The number of peripheral stalks and the proteins that comprise them remain controversial. We have expressed subunits E and G in Escherichia coli as maltose binding protein fusion proteins and detected a specific interaction between these two subunits. This interaction was specific for subunits E and G and was confirmed by co-expression of the subunits from a bicistronic vector. The EG complex was characterized using size exclusion chromatography, cross-linking with short length chemical cross-linkers, circular dichroism spectroscopy, and electron microscopy. The results indicate a tight interaction between subunits E and G and revealed interacting helices in the EG complex with a length of about 220 angstroms. We propose that the V-ATPase EG complex forms one of the peripheral stators similar to the one formed by the two copies of subunit b in F-ATPase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号