首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
  2015年   1篇
  2014年   4篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  1991年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Changes in evoked potentials from the VNC of P. americana were recorded under in vitro and topical application of sublethal doses of fenvalerate. In this study significant changes in physical characteristics of action potentials like threshold voltage, duration, latency and amplitude were noticed. In in vitro studies the effects were found to be dose dependent, while in topical exposure maximum effect was noticed at 3h, followed by recovery during subsequent periods of exposure. Moreover, changes were more pronounced in in vitro than topical exposure.  相似文献   
2.
We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.The genus Flavivirus, many of whose more than 70 members are arthropod-borne human pathogens, such as dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), tick-borne encephalitis virus, and Japanese encephalitis virus (JEV), has assumed increasing public health importance in recent years. The single-strand, positive-sense RNA genomes of flaviviruses encode a single polyprotein, which is cotranslationally cleaved to produce three structural proteins (capsid [C], membrane [M], and envelope [E]) and seven nonstructural (NS) proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, and NS5). NS1, a glycoprotein, is perhaps the most versatile among these, being involved both in vital processes such as viral RNA synthesis and in multiple interactions with the host, in ways that appear to benefit both pathogen and host. Following translocation into the lumen of the endoplasmic reticulum through a hydrophobic signal sequence that is encoded by the carboxyl terminus of E (17), NS1 undergoes glycosylation followed by rapid dimerization (44, 52). In DENV infection of cultured mammalian cells, extracellular NS1 was additionally detected as hexamers (19, 51). Despite the apparent absence of a canonical hydrophobic membrane anchor domain, the NS1s from JEV, Kunjin virus, DENV, and YFV have all been shown to be present on the surface of virus-infected cells (8, 23, 50). The mechanistic details of this membrane anchor still remain uncertain.The ability of DENV NS1 to bind host complement (9, 49) pointed to a role for this protein in DENV pathogenesis. Serum NS1 levels in both DENV and WNV patients correlate directly with disease severity (1, 36). Promotion of immune complex formation (54), ability to elicit autoantibodies with reactivity to platelets and extracellular matrix (10), and damage inflicted on endothelial cells (34) are some of the mechanisms proposed to explain pathogenesis mediated by DENV NS1. Recent studies with WNV NS1 demonstrated its ability to bind human complement factor H, suggesting a role in reducing the host''s ability to bring about complement-mediated control of early virus replication (11).Critical differences between the functions of NS1s encoded by different pathogenic flaviviruses and their contributions to pathology are evident from the published reports, with DENV NS1 believed to be involved in complement activation and the consequent capillary leak syndrome of dengue hemorrhagic fever (6), while WNV NS1 appears relatively more benign and has more to do with modulation of the host innate immune response (11). We have not encountered reports of adverse impacts of JEV NS1 in infected individuals.Paradoxically, several studies have pointed to a role for flavivirus NS1-specific immune responses in protection against flaviviruses. Passive immunization studies using monoclonal antibodies (MAbs) (24, 28, 29, 55) as well as immunization of mice using naked DNA constructs expressing NS1 (35, 40) revealed that antibodies directed to prM or E of DENV and NS1 of DENV and JEV are protective. Studies by different groups have shown that active immunization with purified NS1 or passive immunization with MAbs against YFV and DENV NS1 provides protection from lethal viral challenge in the absence of neutralizing antibodies (24, 45, 48). A panel of anti-WNV NS1 MAbs revealed multiple antibody-mediated mechanisms for protection, some mediated through complement and others via the Fc receptor (12). Those authors went on to show that anti-NS1 MAbs that facilitate phagocytosis and clearance of WNV-infected cells through Fc-γ receptors I and/or IV belonged to the IgG2a subclass and bound to cell surface-associated NS1 (13).Earlier studies also pointed to the cytolytic potential of NS1 antibodies, a property that might contribute significantly to their protective ability. Passive immunization experiments using a panel of anti YFV NS1-specific MAbs showed a significant correlation between protection and in vitro complement-mediated cytolysis of YFV-infected mouse neuroblastoma cells (47). Additionally, immunization of mice with a DNA vaccine construct carrying JEV NS1 induced a strong antibody response exhibiting complement-mediated cytolysis of JEV-infected cells (35), but no neutralizing activity, and resulted in protection against subsequent challenge with virus. Cell-mediated immune responses directed to NS1 of JEV have also been reported to play a role in cytotoxic T-lymphocyte-mediated killing of JEV-infected murine target cells (41). Thus, NS1 appears to contribute to protection in the murine model by inducing both humoral and cell-mediated arms of the immune response.It was therefore of interest to query whether NS1-specific antibodies in humans exposed to JEV exhibit cytolytic activity and to determine if these antibodies are capable of reducing virus production by infected cells. In this study we report for the first time the existence of detectable levels of anti-NS1 antibodies in a significant proportion of sera from humans infected with JEV and demonstrate their ability to induce antibody-dependent complement-mediated cytolysis of cells expressing JEV NS1 on the surface. These sera failed to cause lysis of cells infected with WNV or DENV, both of which cocirculate with JEV in the Indian subcontinent and have been reported in the region where we enrolled our volunteers, revealing stringent specificity and absence of flaviviral cross-reactivity for these cytolytic antibodies. Furthermore, we demonstrate the ability of NS1-specific antibodies elicited in mice to limit virus production in infected human SW-13 cell monolayers, which may explain, at least in part, the widely reported protective ability of flavivirus NS1. Significantly, we found no evidence for the ability of NS1 from JEV to bind human complement factor H, in contrast to the case for WNV NS1 (11). Taken together, these findings suggest that JEV NS1 may positively and significantly affect virus-specific protective immune responses.  相似文献   
3.
DNA samples of 948 individuals belonging to 27 populations from southern Andhra Pradesh were analyzed for nine AmpFlSTR Profiler Plus loci. The nature and extent of genomic diversity within and between these populations have been examined with reference to socioeconomic and geographic affiliations. The results suggest that the average heterozygosity is uniformly high in these populations (> 0.80) and that the patterns of allele distributions are similar across the populations. The value of the coefficient of gene differentiation and the AMOVA and structure analysis results suggest that these populations are highly homogeneous. The neighbor-joining tree constructed using either D(A) or F(ST) distances suggests no intelligible pattern of population clusters based on ethnohistoric or geographic affiliations. All these observations suggest either a common recent origin of these populations or extensive gene flow across the populations that erased the original genetic differences. Given strict endogamy, the latter explanation can hold only if there has been unauthorized or unrecognized gene flow transecting the social boundaries. Nevertheless, the regression plot of average heterozygosity versus distance from the centroid (Rii), based on Harpending and Ward's (1982) model, and the genetic distances computed between different hierarchical groups within Andhra Pradesh tend to support this conjecture. Overall, the results suggest lack of a significant degree of genetic stratification that is consistent with social stratification in Andhra Pradesh. Furthermore, the neighbor-joining tree based on comparative data from other Indian and continental populations brings out a single and compact cluster of all the Andhra populations that is clearly separated from the rest.  相似文献   
4.
5.
Watermelon (Citrullus lanatus var. lanatus) is one of the most important vegetable crops in the world. Molecular markers have become the tools of choice for resolving watermelon taxonomic relationships and evolution. Increased numbers of single nucleotide polymorphism (SNP) markers together with simple sequence repeat (SSR) markers would be useful for phylogenetic analyses of germplasm accessions and for linkage mapping for marker-assisted breeding with quantitative trait loci and single genes. We aimed to construct a genetic map based on SNPs (generated by Illumina Veracode multiplex assays for genotyping) and SSR markers and evaluate relationships inferred from SNP genotypes between 130 watermelon accessions collected throughout the world. We incorporated 282 markers (232 SNPs and 50 SSRs) into the linkage map. The genetic map consisted of 11 linkage groups spanning 924.72 cM with an average distance of 3.28 cM between markers. Because all of the SNP-containing sequences were assembled with the whole-genome sequence draft for watermelon, chromosome numbers could be readily assigned for all the linkage groups. We found that 134 SNPs were polymorphic in 130 watermelon accessions chosen for diversity studies. The current 384-plex SNP set is a powerful tool for characterizing genetic relatedness and for developing medium-resolution genetic maps.  相似文献   
6.
Agricultural productivity is limited by the removal of sap, alterations in source-sink patterns, and viral diseases vectored by aphids, which are phloem-feeding pests. Here we show that TREHALOSE PHOSPHATE SYNTHASE11 (TPS11) gene-dependent trehalose metabolism regulates Arabidopsis thaliana defense against Myzus persicae (Sülzer), commonly known as the green peach aphid (GPA). GPA infestation of Arabidopsis resulted in a transient increase in trehalose and expression of the TPS11 gene, which encodes a trehalose-6-phosphate synthase/phosphatase. Knockout of TPS11 function abolished trehalose increases in GPA-infested leaves of the tps11 mutant plant and attenuated defense against GPA. Trehalose application restored resistance in the tps11 mutant, confirming that the lack of trehalose accumulation is associated with the inability of the tps11 mutant to control GPA infestation. Resistance against GPA was also higher in the trehalose hyper-accumulating tre1 mutant and in bacterial otsB gene-expressing plants, further supporting the conclusion that trehalose plays a role in Arabidopsis defense against GPA. Evidence presented here indicates that TPS11-dependent trehalose regulates expression of the PHYTOALEXIN DEFICIENT4 gene, which is a key modulator of defenses against GPA. TPS11 also promotes the re-allocation of carbon into starch at the expense of sucrose, the primary plant-derived carbon and energy source for the insect. Our results provide a framework for the signaling function of TPS11-dependent trehalose in plant stress responses, and also reveal an important contribution of starch in controlling the severity of aphid infestation.  相似文献   
7.

Key message

Functional markers for Sclerotinia basal stalk rot resistance in sunflower were obtained using gene-level information from the model species Arabidopsis thaliana.

Abstract

Sclerotinia stalk rot, caused by Sclerotinia sclerotiorum, is one of the most destructive diseases of sunflower (Helianthus annuus L.) worldwide. Markers for genes controlling resistance to S. sclerotiorum will enable efficient marker-assisted selection (MAS). We sequenced eight candidate genes homologous to Arabidopsis thaliana defense genes known to be associated with Sclerotinia disease resistance in a sunflower association mapping population evaluated for Sclerotinia stalk rot resistance. The total candidate gene sequence regions covered a concatenated length of 3,791 bp per individual. A total of 187 polymorphic sites were detected for all candidate gene sequences, 149 of which were single nucleotide polymorphisms (SNPs) and 38 were insertions/deletions. Eight SNPs in the coding regions led to changes in amino acid codons. Linkage disequilibrium decay throughout the candidate gene regions declined on average to an r 2 = 0.2 for genetic intervals of 120 bp, but extended up to 350 bp with r 2 = 0.1. A general linear model with modification to account for population structure was found the best fitting model for this population and was used for association mapping. Both HaCOI1-1 and HaCOI1-2 were found to be strongly associated with Sclerotinia stalk rot resistance and explained 7.4 % of phenotypic variation in this population. These SNP markers associated with Sclerotinia stalk rot resistance can potentially be applied to the selection of favorable genotypes, which will significantly improve the efficiency of MAS during the development of stalk rot resistant cultivars.  相似文献   
8.
A high-resolution genetic map of sunflower was constructed by integrating SNP data from three F2 mapping populations (HA 89/RHA 464, B-line/RHA 464, and CR 29/RHA 468). The consensus map spanned a total length of 1443.84 cM, and consisted of 5,019 SNP markers derived from RAD tag sequencing and 118 publicly available SSR markers distributed in 17 linkage groups, corresponding to the haploid chromosome number of sunflower. The maximum interval between markers in the consensus map is 12.37 cM and the average distance is 0.28 cM between adjacent markers. Despite a few short-distance inversions in marker order, the consensus map showed high levels of collinearity among individual maps with an average Spearman''s rank correlation coefficient of 0.972 across the genome. The order of the SSR markers on the consensus map was also in agreement with the order of the individual map and with previously published sunflower maps. Three individual and one consensus maps revealed the uneven distribution of markers across the genome. Additionally, we performed fine mapping and marker validation of the rust resistance gene R12, providing closely linked SNP markers for marker-assisted selection of this gene in sunflower breeding programs. This high resolution consensus map will serve as a valuable tool to the sunflower community for studying marker-trait association of important agronomic traits, marker assisted breeding, map-based gene cloning, and comparative mapping.  相似文献   
9.
Perennial ryegrass (Lolium perenne L.) is a preferred choice for the turf grass industry due to its ability to provide a durable turf cover. Genetic or physical contamination of annual (L. multiflorum Lam.) or intermediate (L. hybridum) ryegrass species in perennial ryegrass is one of the major problems affecting the grass seed industry. At present, seedling root fluorescence (SRF), a biochemical marker, is used for the detection of annual ryegrass contamination. Due to the unreliability of the SRF test, the seed industry is seeking an alternative, more reliable and accurate detection method. Currently, there are no DNA tests available in ryegrass for detecting contamination with annual and intermediate ryegrass types. We developed a novel quantitative polymerase chain reaction (Q-PCR)-based DNA test for the detection of annual and/or intermediate ryegrass types in perennial ryegrass. This DNA test was designed using an insertion/deletion (InDel) site in the LpVRN2_2 (Vernalization 2) gene, which is one of the several genes controlling vernalization in ryegrass. The new DNA test is more reliable, accurate and cost-effective in detecting contamination, with a high sensitivity of 0.04% in a sample size of 5,000 seeds. Use of larger sample sizes (12.5-fold higher compared to SRF test) provided additional accuracy in detecting the level of contamination. The method has produced consistent results in 68 perennial, 26 annual and 14 intermediate ryegrass lines.  相似文献   
10.
To resolve the phylogeny of the autochthonous mitochondrial DNA (mtDNA) haplogroups of India and determine the relationship between the Indian and western Eurasian mtDNA pools more precisely, a diverse subset of 75 macrohaplogroup N lineages was chosen for complete sequencing from a collection of >800 control-region sequences sampled across India. We identified five new autochthonous haplogroups (R7, R8, R30, R31, and N5) and fully characterized the autochthonous haplogroups (R5, R6, N1d, U2a, U2b, and U2c) that were previously described only by first hypervariable segment (HVS-I) sequencing and coding-region restriction-fragment-length polymorphism analysis. Our findings demonstrate that the Indian mtDNA pool, even when restricted to macrohaplogroup N, harbors at least as many deepest-branching lineages as the western Eurasian mtDNA pool. Moreover, the distribution of the earliest branches within haplogroups M, N, and R across Eurasia and Oceania provides additional evidence for a three-founder-mtDNA scenario and a single migration route out of Africa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号