首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1985年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi.  相似文献   
2.
3.
4.
The establishment of symbiosis between leguminous plants and rhizobial bacteria requires rapid metabolic changes in both partners. We utilized untargeted quantitative mass spectrometry to perform metabolomic profiling of small molecules in extracts of the model legume Medicago truncatula treated with rhizobial Nod factors. One metabolite closely resembling the 9(R)-HODE class of oxylipins reproducibly showed a decrease in concentration within the first hour of in planta nod factor treatment. Oxylipins are precursors of the jasmonic acid biosynthetic pathway and we showed that both this metabolite and jasmonic acid inhibit Nod factor signaling. Since, oxylipins have been implicated as antimicrobial compounds produced by plants, these observations suggest that the oxylipin pathway may play multiple roles in facilitating Nod factor signaling during the early stages of symbiosis.  相似文献   
5.
Sorghum ergot in India is caused by Claviceps africana and C. sorghi. The distributions of these two species in India is not known. Eighty-nine sorghum ergot isolates were cultured from young sphacelia obtained from male sterile sorghum plants artificially inoculated using inoculum collected in the field. Based on cultural characteristics, the isolates were separated into two groups which differed distinctly in the morphology of their sphacelia, conidia, and sclerotia. Marked differences also were observed in rates of secondary conidial production and disease spread between the groups. In combination with molecular evidence, our results confirm that the isolates placed in Group I represent C. africana and Group II isolates represent C. sorghi. C. africana was found to be widely distributed in all sorghum growing areas of India. The species first described as occuring in India, C. sorghi, appears to be restricted to a few locations in the states of Maharashtra, Andhra Pradesh, and Karnataka.  相似文献   
6.
Symbiotic associations between leguminous plants and nitrogen‐fixing rhizobia culminate in the formation of specialized organs called root nodules, in which the rhizobia fix atmospheric nitrogen and transfer it to the plant. Efficient biological nitrogen fixation depends on metabolites produced by and exchanged between both partners. The Medicago truncatulaSinorhizobium meliloti association is an excellent model for dissecting this nitrogen‐fixing symbiosis because of the availability of genetic information for both symbiotic partners. Here, we employed a powerful imaging technique – matrix‐assisted laser desorption/ionization (MALDI)/mass spectrometric imaging (MSI) – to study metabolite distribution in roots and root nodules of M. truncatula during nitrogen fixation. The combination of an efficient, novel MALDI matrix [1,8–bis(dimethyl‐amino) naphthalene, DMAN] with a conventional matrix 2,5–dihydroxybenzoic acid (DHB) allowed detection of a large array of organic acids, amino acids, sugars, lipids, flavonoids and their conjugates with improved coverage. Ion density maps of representative metabolites are presented and correlated with the nitrogen fixation process. We demonstrate differences in metabolite distribution between roots and nodules, and also between fixing and non‐fixing nodules produced by plant and bacterial mutants. Our study highlights the benefits of using MSI for detecting differences in metabolite distributions in plant biology.  相似文献   
7.
In addition to establishing symbiotic relationships with arbuscular mycorrhizal fungi, legumes also enter into a nitrogen-fixing symbiosis with rhizobial bacteria that results in the formation of root nodules. Several genes involved in the development of both arbuscular mycorrhiza and legume nodulation have been cloned in model legumes. Among them, Medicago truncatula DMI1 (DOESN'T MAKE INFECTIONS1) is required for the generation of nucleus-associated calcium spikes in response to the rhizobial signaling molecule Nod factor. DMI1 encodes a membrane protein with striking similarities to the Methanobacterium thermoautotrophicum potassium channel (MthK). The cytosolic C terminus of DMI1 contains a RCK (regulator of the conductance of K(+)) domain that in MthK acts as a calcium-regulated gating ring controlling the activity of the channel. Here we show that a dmi1 mutant lacking the entire C terminus acts as a dominant-negative allele interfering with the formation of nitrogen-fixing nodules and abolishing the induction of calcium spikes by the G-protein agonist Mastoparan. Using both the full-length DMI1 and this dominant-negative mutant protein we show that DMI1 increases the sensitivity of a sodium- and lithium-hypersensitive yeast (Saccharomyces cerevisiae) mutant toward those ions and that the C-terminal domain plays a central role in regulating this response. We also show that DMI1 greatly reduces the release of calcium from internal stores in yeast, while the dominant-negative allele appears to have the opposite effect. This work suggests that DMI1 is not directly responsible for Nod factor-induced calcium changes, but does have the capacity to regulate calcium channels in both yeast and plants.  相似文献   
8.
Arbuscular mycorrhiza and the rhizobia-legume symbiosis are two major root endosymbioses that facilitate plant nutrition. In Lotus japonicus, two symbiotic cation channels, CASTOR and POLLUX, are indispensable for the induction of nuclear calcium spiking, one of the earliest plant responses to symbiotic partner recognition. During recent evolution, a single amino acid substitution in DOES NOT MAKE INFECTIONS1 (DMI1), the POLLUX putative ortholog in the closely related Medicago truncatula, rendered the channel solo sufficient for symbiosis; castor, pollux, and castor pollux double mutants of L. japonicus were rescued by DMI1 alone, while both Lj-CASTOR and Lj-POLLUX were required for rescuing a dmi1 mutant of M. truncatula. Experimental replacement of the critical serine by an alanine in the selectivity filter of Lj-POLLUX conferred a symbiotic performance indistinguishable from DMI1. Electrophysiological characterization of DMI1 and Lj-CASTOR (wild-type and mutants) by planar lipid bilayer experiments combined with calcium imaging in Human Embryonic Kidney-293 cells expressing DMI1 (the wild type and mutants) suggest that the serine-to-alanine substitution conferred reduced conductance with a long open state to DMI1 and improved its efficiency in mediating calcium oscillations. We propose that this single amino acid replacement in the selectivity filter made DMI1 solo sufficient for symbiosis, thus explaining the selective advantage of this allele at the mechanistic level.  相似文献   
9.
Root hairs play important roles in the interaction of plants with their environment. Root hairs anchor the plant in the soil, facilitate nutrient uptake from the rhizosphere, and participate in symbiotic plant-microbe interactions. These specialized cells grow in a polar fashion which gives rise to their elongated shape, a process mediated in part by a family of small GTPases known as Rops. RopGEFs (GEF, guanine nucleotide exchange factor) activate Rops to effect tip growth in Arabidopsis pollen and root hairs, but the genes mediating tip growth in legumes have not yet been characterized. In this report we describe the Rop and RopGEF gene families from the model legume Medicago truncatula and from the crop legume soybean. We find that one member of the M. truncatula gene family, MtRopGEF2, is required for root hair development because silencing this gene by RNA interference affects the cytosolic Ca2+ gradient and subcellular structure of root hairs, and reduces root hair growth. Consistent with its role in polar growth, we find that a GFP::MtRopGEF2 fusion protein localizes in the apex of emerging and actively growing root hairs. The amino terminus of MtRopGEF2 regulates its ability to interact with MtRops in yeast, and regulates its biological activity in vivo.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号