首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   6篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1998年   1篇
  1992年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
Modulations in the lipid metabolism in the gill, liver, muscle and brain of freshwater teleost Labeo rohita exposed to 1, 2 and 3 days to lethal (1.2 mg/l) and 1, 15 and 30 days to sublethal (0.24 mg/l) concentrations of copper were studied. The total lipids decreased and there was an increase in the free fatty acids, glycerol and lipase activity in the organs studied at lethal concentration of copper. The degree in these shifts increased over time of exposure (1 less than 2 less than 3 days). In sublethal concentration, the levels of total lipids, free fatty acids, glycerol and lipase activity increased in all the four organs and the shifts followed two different trends during the exposure periods, 1 less than 15 less than 30 days in total lipids and 1 greater than 15 greater than 30 days in the other parameters. Among the organs, in both concentration media the changes in the lipid metabolism were in the order liver greater than gill greater than muscle greater than brain.  相似文献   
2.
Mycobacterium tuberculosis (Mtb) is an obstinate pathogen causing tuberculosis (TB) in Homo sapiens. One third of the World population is affected by Mtb (James et al., 2008). The multidrug-resistant protein-A (MDRA) belongs to ABC transporter family. The protein MDRA and the membrane integral protein MDRB together form the efflux pump (MDRA2B2 complex) that confers resistance by transport of the drugs out of the cell. The MDRB protein expression depends on the expression of MDRA (Baisakhee et al., 2002). In the present study, MDRA 3-D model (Figure) was generated with the help of comparative homology modeling techniques using pair-wise sequence alignment. The predicted 3-D model was subjected to refinement and validated. The active site of the protein was predicted. The virtual screening (VS) studies were performed at MDRB binding site with an in-house library of small molecules to identify a lead molecule that can inhibits the MDRA protein. The results of VS project competitive inhibitors of MDRB, for its binding with MDRA, and its drug-resistant activity. Hence, the MDRA protein may be treated as a novel target for the development of new chemical entities for tuberculosis therapy (Bhargavi et al., 2010; Malkhed et al., 2011).  相似文献   
3.
Aquaporin-5 (AQP5) is present on the apical membrane of epithelial cells in various secretory glands as well as on the apical membrane of the airway epithelium, airway submucosal glands, and type 1 pneumocytes, where it can participate in respiratory tract water homeostasis. We examined the effects of cAMP on AQP5 distribution and abundance. When AQP5-expressing mouse lung epithelial cells were treated with cAMP or the beta-adrenergic agonist terbutaline, a biphasic AQP5 response was observed. Short term (minutes) exposure to cAMP produced internalization of AQP5 off of the membrane and a decrease in protein abundance. Both of these responses were blocked by inhibition of protein kinase A and the decrease in abundance was blocked by chloroquine, indicating lysosome-mediated degradation. Sustained cAMP exposure (hours) produced an increase in membrane localization and increased abundance; these effects were also blocked by protein kinase A inhibition. The beta-adrenergic agonist terbutaline produced changes in AQP5 abundance in mouse trachea and lung, consistent with our findings in cultured epithelial cells. Purified AQP5 protein was phosphorylated by protein kinase A but not protein kinase C or casein kinase II, and aquaporin-5 was phosphorylated in cultured cells after long term (but not short term) exposure to cAMP. These studies indicate that cAMP and beta-adrenergic agonists produce distinct short and long term effects on AQP5 distribution and abundance that may contribute to regulation of lung water homeostasis.  相似文献   
4.
Aquaporin-5 (AQP5) is a water-specific channel located on the apical surface of airway epithelial cells. In addition to regulating transcellular water permeability, AQP5 can regulate paracellular permeability, though the mechanisms by which this occurs have not been determined. Microtubules also regulate paracellular permeability. Here, we report that AQP5 promotes microtubule assembly and helps maintain the assembled microtubule steady state levels with slower turnover dynamics in cells. Specifically, reduced levels of AQP5 correlated with lower levels of assembled microtubules and decreased paracellular permeability. In contrast, overexpression of AQP5 increased assembly of microtubules, with evidence of increased MT stability, and promoted the formation of long straight microtubules in the apical domain of the epithelial cells. These findings indicate that AQP5-mediated regulation of microtubule dynamics modulates airway epithelial barrier properties and epithelial function.  相似文献   
5.
Pectins are the most complex polysaccharides of the plant cell wall. Based on the number of methylations, acetylations and glycosidic linkages present in their structures, it is estimated that up to 67 transferase activities are involved in pectin biosynthesis. Pectic galactans constitute a major part of pectin in the form of side‐chains of rhamnogalacturonan‐I. In Arabidopsis, galactan synthase 1 (GALS1) catalyzes the addition of galactose units from UDP‐Gal to growing β‐1,4‐galactan chains. However, the mechanisms for obtaining varying degrees of polymerization remain poorly understood. In this study, we show that AtGALS1 is bifunctional, catalyzing both the transfer of galactose from UDP‐α‐d ‐Gal and the transfer of an arabinopyranose from UDP‐β‐l ‐Arap to galactan chains. The two substrates share a similar structure, but UDP‐α‐d ‐Gal is the preferred substrate, with a 10‐fold higher affinity. Transfer of Arap to galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bifunctionality of AtGALS1 may suggest that plants can produce the incredible structural diversity of polysaccharides without a dedicated glycosyltransferase for each glycosidic linkage.  相似文献   
6.
The present work examines the production of a biodiesel from a non-edible oil namely honne oil (Calophyllum inophyllum linn). A three stage process viz., pre-treatment, alkali catalyzed transesterification and post treatment adopted for the production is discussed. The reaction parameters such as methanol to oil molar ratio, catalyst concentration, temperature and time have been optimized for the production of biodiesel. The yield of biodiesel from the honne oil under the optimized conditions is found to be 89%.  相似文献   
7.
Patients with alcoholic cirrhosis and hepatitis have severe muscle loss. Since ethanol impairs skeletal muscle protein synthesis but does not increase ubiquitin proteasome-mediated proteolysis, we investigated whether alcohol-induced autophagy contributes to muscle loss. Autophagy induction was studied in: A) Human skeletal muscle biopsies from alcoholic cirrhotics and controls, B) Gastrocnemius muscle from ethanol and pair-fed mice, and C) Ethanol-exposed murine C2C12 myotubes, by examining the expression of autophagy markers assessed by immunoblotting and real-time PCR. Expression of autophagy genes and markers were increased in skeletal muscle from humans and ethanol-fed mice, and in myotubes following ethanol exposure. Importantly, pulse-chase experiments showed suppression of myotube proteolysis upon ethanol-treatment with the autophagy inhibitor, 3-methyladenine (3MA) and not by MG132, a proteasome inhibitor. Correspondingly, ethanol-treated C2C12 myotubes stably expressing GFP-LC3B showed increased autophagy flux as measured by accumulation of GFP-LC3B vesicles with confocal microscopy. The ethanol-induced increase in LC3B lipidation was reversed upon knockdown of Atg7, a critical autophagy gene and was associated with reversal of the ethanol-induced decrease in myotube diameter. Consistently, CT image analysis of muscle area in alcoholic cirrhotics was significantly reduced compared with control subjects. In order to determine whether ethanol per se or its metabolic product, acetaldehyde, stimulates autophagy, C2C12 myotubes were treated with ethanol in the presence of the alcohol dehydrogenase inhibitor (4-methylpyrazole) or the acetaldehyde dehydrogenase inhibitor (cyanamide). LC3B lipidation increased with acetaldehyde treatment and increased further with the addition of cyanamide. We conclude that muscle autophagy is increased by ethanol exposure and contributes to sarcopenia.  相似文献   
8.
Papaya mealybug (PMB) is a serious insect pest for papaya production in Sub-Saharan Africa, limiting production potential in farming communities. We did a household survey to evaluate the Characteristics of farmers'' knowledge, challenges, and current (PMB) control practices in four papaya growing regions of Tanzania namely, Tanga, Dodoma, Pwani, and Katavi involving 100 papaya farmers. The study found that 96% of farmers reported PMB, as a major challenge in papaya production. Very few (0.8%) of the farmers were knowledgeable on insect pest identification. Chemical pesticides were the only option for PMB control, and 43.0% of farmers were able to access and apply. We also found that 36.4% of the farmers were aware of the adverse effects of chemical pesticides. Furthermore, the study observed that 0.3% of farmers use botanical pesticides. Additionally, the study observed that 44.1% of farmers use control measures against PMB, the remaining 55.9% did not practice any control measure, thus leading to low papaya yields observed in the study regions. Our findings provide insights to farmers into the use of plant-based pesticides, mainly plant essential oils, and its benefits that may promote farmers'' attitudes towards increasing papaya yield and reducing chemical pesticide use to avoid pest resistance.  相似文献   
9.
10.
Endogenously produced, diffusible redox mediators can act as electron shuttles for bacterial respiration. Accordingly, the mediators also serve a critical role in microbial fuel cells (MFCs), as they assist extracellular electron transfer from the bacteria to the anode serving as the intermediate electron sink. Electrochemical impedance spectroscopy (EIS) may be a valuable tool for evaluating the role of mediators in an operating MFC. EIS offers distinct advantages over some conventional analytical methods for the investigation of MFC systems because EIS can elucidate the electrochemical properties of various charge transfer processes in the bio‐energetic pathway. Preliminary investigations of Shewanella oneidensis DSP10‐based MFCs revealved that even low quantities of extracellular mediators significantly influence the impedance behavior of MFCs. EIS results also suggested that for the model MFC studied, electron transfer from the mediator to the anode may be up to 15 times faster than the electron transfer from bacteria to the mediator. When a simple carbonate membrane separated the anode and cathode chambers, the extracellular mediators were also detected at the cathode, indicating diffusion from the anode under open circuit conditions. The findings demonstrated that EIS can be used as a tool to indicate presence of extracellular redox mediators produced by microorganisms and their participation in extracellular electron shuttling. Biotechnol. Bioeng. 2009; 104: 882–891. © 2009 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号