首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  3篇
  2021年   1篇
  2012年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Objective

Chromovert® Technology is presented as a new cell engineering technology to detect and purify living cells based on gene expression.

Methods

The technology utilizes fluorogenic oligonucleotide signaling probes and flow cytometry to detect and isolate individual living cells expressing one or more transfected or endogenously-expressed genes.

Results

Results for production of cell lines expressing a diversity of ion channel and membrane proteins are presented, including heteromultimeric epithelial sodium channel (αβγ-ENaC), sodium voltage-gated ion channel 1.7 (NaV1.7-αβ1β2), four unique γ-aminobutyric acid A (GABAA) receptor ion channel subunit combinations α1β3γ2s, α2β3γ2s, α3β3γ2s and α5β3γ2s, cystic fibrosis conductance regulator (CFTR), CFTR-Δ508 and two G-protein coupled receptors (GPCRs) without reliance on leader sequences and/or chaperones. In addition, three novel plasmid-encoded sequences used to introduce 3′ untranslated RNA sequence tags in mRNA expression products and differentially-detectable fluorogenic probes directed to each are described. The tags and corresponding fluorogenic signaling probes streamline the process by enabling the multiplexed detection and isolation of cells expressing one or more genes without the need for gene-specific probes.

Conclusions

Chromovert technology is provided as a research tool for use to enrich and isolate cells engineered to express one or more desired genes.

  相似文献   
2.
Rapid opening and closing of pentameric ligand-gated ion channels (pLGICs) regulate information flow throughout the brain. For pLGICs, it is postulated that neurotransmitter-induced movements in the extracellular inner β-sheet trigger channel activation. Homology modeling reveals that the β4-β5 linker physically connects the neurotransmitter binding site to the inner β-sheet. Inserting 1, 2, 4, and 8 glycines in this region of the GABA(A) receptor β-subunit progressively decreases GABA activation and converts the competitive antagonist SR-95531 into a partial agonist, demonstrating that this linker is a key element whose length and flexibility are optimized for efficient signal propagation. Insertions in the α- and γ-subunits have little effect on GABA or SR-95531 actions, suggesting that asymmetric motions in the extracellular domain power pLGIC gating. The effects of insertions on allosteric modulator actions, pentobarbital, and benzodiazepines, have different subunit dependences, indicating that modulator-induced signaling is distinct from agonist gating.  相似文献   
3.
A potential novel binding assay based on binding-driven micromechanical motion is described. A membrane preparation containing 5-HT(3AS) receptors was used to modify a microcantilever. The modified microcantilever was found to bend on application of the naturally occurring agonist (5-hydroxytryptamine, which is also called serotonin) or the antagonist MDL-72222, but not to other similar molecules. Control experiments show that cantilevers modified by membrane preparations that do not contain 5-HT(3AS) receptors do not respond to serotonin or MDL-72222. K(d) values obtained for serotonin and MDL-72222 are identical to those obtained from radio-ligand binding assays. These results suggest that the microcantilever system has potential for use in label-free, drug screening applications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号