首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  31篇
  2021年   1篇
  2017年   1篇
  2013年   2篇
  2012年   5篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1993年   1篇
  1978年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.

Background  

Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem.  相似文献   
2.
Length variation in the human mtDNA intergenic region between the cytochrome oxidase II (COII) and tRNA lysine (tRNAlys) genes has been widely studied in world populations. Specifically, Austronesian populations of the Pacific and Austro-Asiatic populations of southeast Asia most frequently carry the 9-bp deletion in that region implying their shared common ancestry in haplogroup B. Furthermore, multiple independent origins of the 9-bp deletion at the background of other mtDNA haplogroups has been shown in populations of Africa, Europe, Australia, and India. We have analyzed 3293 Indian individuals belonging to 58 populations, representing different caste, tribal, and religious groups, for the length variation in the 9-bp motif. The 9-bp deletion (one copy) and insertion (three copies) alleles were observed in 2.51% (2.15% deletion and 0.36% insertion) of the individuals. The maximum frequency of the deletion (45.8%) was observed in the Nicobarese in association with the haplogroup B5a D-loop motif that is common throughout southeast Asia. The low polymorphism in the D-loop sequence of the Nicobarese B5a samples suggests their recent origin and a founder effect, probably involving migration from southeast Asia. Interestingly, none of the 302 (except one Munda sample, which has 9-bp insertion) from Mundari-speaking Austro-Asiatic populations from the Indian mainland showed the length polymorphism of the 9-bp motif, pointing either to their independent origin from the Mon-Khmeric-speaking Nicobarese or to an extensive admixture with neighboring Indo-European-speaking populations. Consistent with previous reports, the Indo-European and Dravidic populations of India showed low frequency of the 9-bp deletion/insertion. More than 18 independent origins of the deletion or insertion mutation could be inferred in the phylogenetic analysis of the D-loop sequences.  相似文献   
3.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and finally death. ALS patients suffer from asthenia and their progressive weakness negatively impacts quality of life, limiting their daily activities. They have impaired energy balance linked to lower activity of mitochondrial electron transport chain enzymes in ALS spinal cord, suggesting that improving mitochondrial function may present a therapeutic approach for ALS. When fed a ketogenic diet, the G93A ALS mouse shows a significant increase in serum ketones as well as a significantly slower progression of weakness and lower mortality rate. In this study, we treated SOD1-G93A mice with caprylic triglyceride, a medium chain triglyceride that is metabolized into ketone bodies and can serve as an alternate energy substrate for neuronal metabolism. Treatment with caprylic triglyceride attenuated progression of weakness and protected spinal cord motor neuron loss in SOD1-G93A transgenic animals, significantly improving their performance even though there was no significant benefit regarding the survival of the ALS transgenic animals. We found that caprylic triglyceride significantly promoted the mitochondrial oxygen consumption rate in vivo. Our results demonstrated that caprylic triglyceride alleviates ALS-type motor impairment through restoration of energy metabolism in SOD1-G93A ALS mice, especially during the overt stage of the disease. These data indicate the feasibility of using caprylic acid as an easily administered treatment with a high impact on the quality of life of ALS patients.  相似文献   
4.
5.
The histological effect on and stress response of post juvenile Clarias gariepinus exposed to Qua Iboe crude oil and rig wash were investigated. Fish weighing 60–90 g and measuring 16–18 cm were exposed for 7–28 days to 8.00 ml?1 Qua Iboe crude oil and 0.0018 ml–1 rig wash, both being 0.1 of the 96 hr LC50. Blood samples of C. gariepinus were collected every seven days and evaluated for stress by measuring cortisol concentration. The gills and liver were studied and scored for Gill Alteration Index (GAI) and Hepatic Alteration Index (HAI), respectively. There was an increase in cortisol level up to the 7th and 14th day among the group exposed to Qua Iboe crude oil, with a decrease on the 21st and 28th day. The rig wash group increased in cortisol level up to the 7th day and decreased slightly on the 14th day, after which the trend became irregular. The toxic effects of the Qua Iboe crude oil and rig wash were time dependent, as shown by the histopathological alteration index (HAI) of gill and liver. After 28 days of exposure, the gills had irreparable damage due to high frequency of cellular necrosis and degeneration, whereas the liver had from moderate to severe damage due to the high frequency of cellular degeneration and inflammation. Qua Iboe crude oil and rig wash are both toxic to C. gariepinus, therefore their indiscriminate discharge to the environment must be discouraged.  相似文献   
6.
Cytochrome c (cyt c) is a heme-containing protein that participates in electron transport in the respiratory chain and as a signaling molecule in the apoptotic cascade. Here we addressed the effect of removing mammalian cyt c on the integrity of the respiratory complexes in mammalian cells. Mitochondria from cyt c knockout mouse cells lacked fully assembled complexes I and IV and had reduced levels of complex III. A redox-deficient mutant of cyt c was unable to rescue the levels of complexes I and IV. We found that cyt c is associated with both complex IV and respiratory supercomplexes, providing a potential mechanism for the requirement for cyt c in the assembly/stability of complex IV.The mitochondrial electron transport chain consists of four multisubunit complexes, namely, NADH-ubiquinone oxidoreductase (complex I),2 succinate-ubiquinone oxidoreductase (complex II), ubiquinone-cytochrome c oxidoreductase (complex III), and cytochrome c oxidase (complex IV, COX). Cytochrome c (cyt c) shuttles electrons from oxidative phosphorylation complex III to complex IV. Electrons are transferred from reduced cyt c sequentially to the CuA site, heme a, heme a3, and CuB binuclear center in the complex IV before being finally transferred to molecular oxygen to generate water (1). Respiratory complexes are assembled into supercomplexes (also called respirasomes). These contain complex I bound to dimeric complex III and a variable copy number of complex IV (2).In Saccharomyces cerevisiae, cyt c is encoded by two genes: CYC1 and CYC7. Mutagenesis studies in yeast have shown that cyt c is required for the assembly of COX (3, 4). In yeast lacking both the cyt c genes (CYC1 and CYC7), COX assembly was absent. It was also shown that cyt c is only structurally required for COX assembly, because a catalytic mutant of cyt c (W65S) was sufficient to bring about near normal levels of COX. However, because yeast lacks complex I, they could not analyze the role of cyt c in the assembly/stability of complex I. Mammals possess two different isoforms of cyt c encoded on different chromosomes: the somatic (cyt cS)- and testis (cyt cT)-specific isoforms. In mouse, the cDNAs bear 74% homology, whereas the proteins possess 86% identity with most dissimilarity in the C terminus.Cardiolipin (CL) is an anionic phospholipid present almost exclusively in the mitochondrial membranes and constitutes 25% of its total phospholipids (5). Work from several laboratories showed that CL is essential for the membrane anchorage of the respiratory supercomplexes. CL has two main roles in the mitochondrial structure and function, namely, stabilization of mitochondrial membranes and specific interactions with proteins. CL deficiency results in inefficient energy transformation by oxidative phosphorylation, swelling of mitochondria, decreased ATP/oxygen ratio, and reduced membrane potential (6, 7). In accordance, in S. cerevisiae lacking CL synthase, the supercomplex comprising complexes III and IV is unstable (8). Assembly mutants of COX had significantly reduced CL synthase activity, whereas assembly mutants of respiratory complex III and complex V showed less inhibition (9). Subsequently, the proton gradient across the inner mitochondrial membrane was found to be important for CL formation and that CL synthase was stimulated by alkaline pH at the matrix side (10). In this study, we investigated the role of cyt c depletion on CL levels by examining its content and composition in cyt c null cells.Here we aimed to answer the following questions: What is the role of cyt c in the assembly and maintenance of the different respiratory complexes in mammals? Are there changes in the content/composition of lipids in the cyt c-ablated cells? Analysis of mouse fibroblasts revealed that cyt c is essential for the assembly/stability of COX, and a catalytically mutant form of cyt c cannot rescue the COX defect in the cyt c null cells. CL and triacylglycerols showed significant differences in the cyt c null cells, both in content and composition.  相似文献   
7.
Dhanasekaran SM  Vempati UD  Kondaiah P 《Gene》2001,263(1-2):171-178
Transforming Growth Factor-beta (TGF-beta) and their receptors have been characterized from many organisms. Two TGF-beta signaling receptors called Type I and II have been described for various ligands of the superfamily from organisms ranging from Drosophila to humans. In Xenopus laevis, TGF-beta2 and 5 have been reported and presumably, play important roles during early development. Several Type I and type II receptors for many ligands of the TGF-beta superfamily except TGF-beta type II receptor (TbetaIIR), have been characterized in Xenopus laevis. A chemical cross linking experiment using iodinated TGF-beta1 and -beta5, revealed four specific binding proteins on XTC cells. In order to understand the TGF-beta involvement during Xenopus development, a TGF-beta type II receptor (XTbetaIIR) has been isolated from a XTC cDNA library. XTbetaIIR was a partial cDNA lacking a portion of the signal peptide. The sequence analysis and homology comparison with the human TbetaIIR revealed 67% amino acid similarity in the extra cellular domain, 60% similarity in the transmembrane domain and 87% similarity in the cytoplasmic kinase domain, suggesting that XTbetaIIR is a putative TGF-beta type II receptor. In addition, the consensus amino acid motif for serine threonine receptor kinases was also present. Further, a dominant negative expression construct lacking the cytoplasmic kinase domain (engineered with the signal peptide from human TGF-beta type II receptor), was able to abolish TGF-beta mediated induction of a luciferase reporter plasmid, in a transient cell transfection assay. This substantiates the notion that XTbetaIIR cDNA can act as a receptor for TGF-beta. RT-PCR analysis using RNA isolated from various developmental stages of Xenopus laevis revealed expression of this gene in all the early stages of development and in the adult organs, except in stages 46/48.  相似文献   
8.
Histone covalent modifications play a significant role in the regulation of chromatin structure and function during DNA damage. Hyperacetylation of histones is a DNA damage dependent post translational modification in yeast and mammals. Although acetylation of histones during DNA damage is well established, specific lysine residues that are acetylated is being understood very recently in mammals. Here, in the present study, acetylation of three different lysine residues Histone3Lysine 9 (H3K9), Histone3Lysine 56 (H3K56) and Histone4Lysine 16 (H4K16) were probed with specific antibodies in mammalian cell lines treated with genotoxic agents that induce replication stress or S-phase dependent double strand breaks. Immunoblotting results have shown that DNA damage associated with replication arrest induce acetylation of H3K56 and H4K16 but not H3K9 in mammals. Immunofluorescence experiments further confirmed that acetylated H3K56 and H4K16 form nuclear foci at the site of DNA double strand breaks. Colocalization of H3K56ac with γ H2AX and replication factor PCNA proved the existence of this modification at the site of DNA damage and its probable role in DNA damage repair. Put together, the present data suggests that acetylation of H3K56 and H4K16 are potent DNA damage dependent histone modifications but not H3K9 in mammals.  相似文献   
9.
It has been reported in some cases that an increase in pCO2 stimulates growth in diluted cell suspension cultures. Experiments have been designed to study the pattern of dark CO2 fixation in sycamore cells grown in liquid suspension and to correlate this pattern with the culture growth phases. Comparisons were made between enzymatic activities, CO2 incorporation, malic acid content during lag, logarithmic and stationary phases of growth. Malic enzyme (NADP-dependent) was at its maximum activity during early logarithmic growth phase, when biosynthetic capacities were at the highest. Phosphoenolpyruvate-carboxylase activity was strongly correlated with the ability of cells to fix CO2. Malic acid content decreased soon after transfer of the cells to a new medium and increased at the onset of stationary phase. Under optimal conditions, the CO2 incorporation pattern did not change during growth, with an almost identical incorporation in the basic (amino acids) and acidic (organic acids) fractions. These observations have been discussed in relation to a possible effect of increased pCO2 in the cell environment.  相似文献   
10.
This article discusses the results of efforts to reclaim As-contaminated soil from a former timber-treating plant. The study site, commonly referred to as the Rocker Timber Framing site, is located along Silver Bow Creek approximately 7 miles west of the Butte Mining District, MT, USA. The plant operations resulted in contamination of the soils with a highly caustic solution containing 5% As (III). Contaminated soil resulted in the groundwater plumes that contained up to 25?mg L?1 As, with As (V) being the predominant species. The objective of this study was to evaluate the effectiveness of Fe (II) treatment for remediation of As-contaminated soils. Laboratory-treatability studies were conducted on samples of saturated zone (AS1) and va-dose zone (AV1) soils. The AS1 soil was a mixture of coarse alluvium and potentially some mill tailings from adjacent mining operations. The AV1 soil consisted primarily of fill, including soil, construction debris, and timber fragments. Initial concentrations of total As in AS1 and AV1 soils were 683 and 4814?µg kg?1, respectively. Water-soluble As concentrations were 15.4 and 554?µg L?1, respectively, in a 20:1 solution to soil extract. Batch equilibration were performed by placing 10?g of soil into 20 vessels and adding increasing amounts of FeSO4.7H2O. Amendment increments were made as multiples of molar ratios of total As present in each soil. Treatability studies were run with and without a pH buffer of CaCO3 (added at a 2:1 molar ratio to the FeSO4.7H2O treatment). Solution concentrations of As in the AS1 and AV1 soils (without CaCO3) decreased from 554 to 15.4?µ L?1 and 3802 to 0.64?µ L?1, respectively, as the Fe:As molar ratios increased from 0 to 2, whereas for the AS1 soil the solution As concentration increased at the Fe:As molar ratios >2 and reverse trend was observed for the AV1 soils. The decrease in As solution concentration for the AS1 soil is attributable to the dramatic decrease in soil pH with increasing Fe:As molar ratios. In the case of soils treated with CaCO3, the solution concentrations decreased from 564 to 0.65?µg L?1 and 3790 to 0.79?µg L?1 for the AS1 and AV1 soils, respectively,as the Fe:As molar ratios increased from 0 to 50. Generally, in both the soils, the CaCO3-treated soil contained significantly more solution As compared with the non-CaCO3-treated soil at the comparable Fe:As molar ratios. This is attributable to higher solution pH on CaCO3 treatment. Our rapid engineering study indicates that treating both the soils with Fe:As molar ratio of 2 lowered the As water quality limit to <50?µL?1, whereas treating the AS1 and AV1 soils with Fe:As molar ratio of 2 and 3, respectively, lowered the As water quality limit to ≤15?µg L?1. The concentrations of the Cu and Zn were below the instrument detection limits for the AS1 and AV1 soils without CaCO3 treatment. Sequential extraction of Fe-treated soils illustrated that As was relatively stable. Less than 1% of the As was extractable using a modified TCLP approach and <70% of the As was extractable using a harsh acid modified hydroxylamine hydrochloride extraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号