首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   21篇
  202篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2018年   7篇
  2017年   2篇
  2016年   8篇
  2015年   10篇
  2014年   10篇
  2013年   16篇
  2012年   10篇
  2011年   14篇
  2010年   12篇
  2009年   8篇
  2008年   7篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   6篇
  1999年   8篇
  1998年   4篇
  1997年   1篇
  1996年   6篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有202条查询结果,搜索用时 0 毫秒
1.
A variation of fluorescence photobleaching recovery (FPR) suitable for measuring the rate of rotational molecular diffusion in solution and cell membranes is presented in theory and experimental practice for epi-illumination microscopy. In this technique, a brief flash of polarized laser light creates an anisotropic distribution of unbleached fluorophores which relaxes by rotational diffusion, leading to a time-dependent postbleach fluorescence. Polarized FPR (PFPR) is applicable to any time scales from seconds to microseconds. However, at fast (microsecond) time scales, a partial recovery independent of molecular orientation tends to obscure rotational effects. The theory here presents a method for overcoming this reversible photobleaching, and includes explicit results for practical geometries, fast wobble of fluorophores, and arbitrary bleaching depth. This variation of a polarized luminescence "pump-and-probe" technique is compared with prior ones and with "pump-only" time-resolved luminescence anisotropy decay methods. The technique is experimentally verified on small latex beads with a variety of diameters, common fluorophore labels, and solvent viscosities. Preliminary measurements on a protein (acetylcholine receptor) in the membrane of nondeoxygenated cells in live culture (rat myotubes) show a difference in rotational diffusion between clustered and nonclustered receptors. In most experiments, signal averaging, high laser power, and automated sample translation must be employed to achieve adequate statistical accuracy.  相似文献   
2.
The rotational mobility of acetylcholine receptors (AChR) in the plasma membrane of living rat myotubes in culture is measured in this study by polarized fluorescence recovery after photobleaching (PFRAP). These AChR are known to exist in two distinct classes, evident by labeling with rhodamine alpha-bungarotoxin; clustered AChR that are aggregated in a pattern of highly concentrated speckles and streaks, with each cluster occupying an area of approximately 1,000 microns 2; and nonclustered AChR that appear as diffuse labeling. PFRAP results reported here show that: (a) most clustered AChR (approximately 86%) are rotationally immobile within a time scale of at least several seconds; and (b) most nonclustered AChR (approximately 76%) are rotationally mobile with characteristic times ranging from less than 50 ms to 0.1 s. External cross-linking with the tetravalent lectin concanavalin A immobilizes many nonclustered AChR. PFRAP experiments in the presence of carbachol or cytochalasin D show that the restraints to rotational motion in clusters are remarkably immune to treatments that disperse clusters or disrupt cytoplasmic actin. The experiments also demonstrate the feasibility of using PFRAP to measure rotational diffusion on selected microscopic areas of living nondeoxygenated cells labeled with standard fluorescence probes over a very wide range of time scales, and they also indicate what technical improvements would make PFRAP even more practicable.  相似文献   
3.

Aim

Coastal fishes have a fundamental role in marine ecosystem functioning and contributions to people, but face increasing threats due to climate change, habitat degradation and overexploitation. The extent to which human pressures are impacting coastal fish biodiversity in comparison with geographic and environmental factors at large spatial scale is still under scrutiny. Here, we took advantage of environmental DNA (eDNA) metabarcoding to investigate the relationship between fish biodiversity, including taxonomic and genetic components, and environmental but also socio-economic factors.

Location

Tropical, temperate and polar coastal areas.

Time period

Present day.

Major taxa studied

Marine fishes.

Methods

We analysed fish eDNA in 263 stations (samples) in 68 sites distributed across polar, temperate and tropical regions. We modelled the effect of environmental, geographic and socio-economic factors on α- and β-diversity. We then computed the partial effect of each factor on several fish biodiversity components using taxonomic molecular units (MOTU) and genetic sequences. We also investigated the relationship between fish genetic α- and β-diversity measured from our barcodes, and phylogenetic but also functional diversity.

Results

We show that fish eDNA MOTU and sequence α- and β-diversity have the strongest correlation with environmental factors on coastal ecosystems worldwide. However, our models also reveal a negative correlation between biodiversity and human dependence on marine ecosystems. In areas with high dependence, diversity of all fish, cryptobenthic fish and large fish MOTUs declined steeply. Finally, we show that a sequence diversity index, accounting for genetic distance between pairs of MOTUs, within and between communities, is a reliable proxy of phylogenetic and functional diversity.

Main conclusions

Together, our results demonstrate that short eDNA sequences can be used to assess climate and direct human impacts on marine biodiversity at large scale in the Anthropocene and can further be extended to investigate biodiversity in its phylogenetic and functional dimensions.  相似文献   
4.
Stirred tank bioreactors using suspension adapted mammalian cells are typically used for the production of complex therapeutic proteins. The hydrodynamic conditions experienced by cells within this environment have been shown to directly impact growth, productivity, and product quality and therefore an improved understanding of the cellular response is critical. Here we investigate the sub‐lethal effects of different aeration strategies on Chinese hamster ovary cells during monoclonal antibody production. Two gas delivery systems were employed to study the presence and absence of the air–liquid interface: bubbled direct gas sparging and a non‐bubbled diffusive silicone membrane system. Additionally, the effect of higher gas flow rate in the sparged bioreactor was examined. Both aeration systems were run using chemically defined media with and without the shear protectant Pluronic F‐68 (PF‐68). Cells were unable to grow with direct gas sparging without PF‐68; however, when a silicone membrane aeration system was implemented growth was comparable to the sparged bioreactor with PF‐68, indicating the necessity of shear protectants in the presence of bubbles. The cultures exposed to increased hydrodynamic stress were shown by flow cytometry to have decreased F‐actin intensity within the cytoskeleton and enter apoptosis earlier. This indicates that these conditions elicit a sub‐lethal physiological change in cells that would not be detected by the at‐line assays which are normally implemented during cell culture. These physiological changes only result in a difference in continuous centrifugation performance under high flow rate conditions. Product quality was more strongly affected by culture age than the hydrodynamic conditions tested. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013.  相似文献   
5.
6.
The depletion of natural resources has become a major issue in many parts of the world, with the most accessible resources being most at risk. In the terrestrial realm, resource depletion has classically been related to accessibility through road networks. In contrast, in the marine realm, the impact on living resources is often framed into the Malthusian theory of human density around ecosystems. Here, we develop a new framework to estimate the accessibility of global coral reefs using potential travel time from the nearest human settlement or market. We show that 58% of coral reefs are located < 30 min from the nearest human settlement. We use a case study from New Caledonia to demonstrate that travel time from the market is a strong predictor of fish biomass on coral reefs. We also highlight a relative deficit of protection on coral reef areas near people, with disproportional protection on reefs far from people. This suggests that conservation efforts are targeting low‐conflict reefs or places that may already be receiving de facto protection due to their isolation. Our global assessment of accessibility in the marine realm is a critical step to better understand the interplay between humans and resources.  相似文献   
7.
8.
Acharya  S; Rayborn  ME; Hollyfield  JG 《Glycobiology》1998,8(10):997-1006
Rod and cone photoreceptors project from the outer retinal surface into a carbohydrate-rich interphotoreceptor matrix (IPM). Unique IPM glycoconjugates are distributed around rods and cones. Wheat germ agglutinin (WGA) strongly decorates the rod matrix domains and weakly decorates the cone matrix domains. This study characterizes the major WGA-binding glycoprotein in the human IPM, which we refer to as SPACR (sialoprotein associated with cones and rods). SPACR, which has a molecular weight of 147 kDa, was isolated and purified from the IPM by lectin affinity chromatography. A polyclonal antibody to SPACR was prepared that colocalizes in tissue preparations with WGA-binding domains in the IPM. Sequential digestion of SPACR with N- and O- glycosidases results in a systematic increase in electrophorectic mobility, indicating the presence of both N- and O-linked glycoconjugates. Complete deglycosylation results in a reduction in the relative molecular mass of SPACR by about 30%. Analysis of lectin binding allowed us to identify some of the structural characteristics of SPACR glycoconjugates. Treatment with neuraminidase exposes Galbeta1- 3GalNAc disaccharide as indicated by positive peanut agglutinin (PNA) staining, accompanied by the loss of WGA staining. Maackia amurensis agglutinins (MAA-1 and MAA-2), specific for sialic acid in alpha2-3 linkage to Gal, bind SPACR, while Sambucus nigra agglutinin (SNA), specific for alpha2-6 linked sialic acid, does not, indicating that the dominant glycoconjugate determinant on SPACR is the O-linked carbohydrate, NeuAcalpha2-3Galbeta1-3GalNAc. The abundance of sialic acid in SPACR suggests that this glycoprotein may contribute substantially to the polyanionic nature of the IPM. The carbohydrate chains present on SPACR could also provide sites for extensive crosslinking and participate in the formation of the ordered IPM lattice that surrounds the elongate photoreceptors projecting from the outer retinal surface.   相似文献   
9.
The recent structure determinations of the mammalian effector enzyme adenylyl cyclase reveal the structure of its catalytic core, provide new insights into its catalytic mechanism and suggest how diverse signaling molecules regulate its activity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号