首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   6篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2012年   4篇
  2011年   9篇
  2010年   4篇
  2009年   4篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   7篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   9篇
  1999年   7篇
  1998年   1篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
排序方式: 共有109条查询结果,搜索用时 31 毫秒
1.
Calcium mobilization induced by phosphorylated sphingoid bases was analyzed in calf pulmonary artery endothelial cells by confocal microscopy. A sphingenine-1-phosphate (SeP) analogue, N-acetyl-sphingenine-1-phosphate (N-C2-SeP), exogenously added to these cells, caused a fast and transient intracellular rise in calcium and was as potent as SeP. A minimal concentration of 0.6 nM for N-C2-SeP versus 1 nM for SeP was determined. The N-C2-SeP-induced Ca2+-signaling, like the response to SeP, was due to a release from thapsigargin-sensitive, ryanodine-insensitive, intracellular Ca2+-stores and not to a Ca2+-influx. N-C2-SeP can be considered as a truncated ceramide-phosphate, a lipid already reported to be mitogenic (Gomez-Munoz, A., Duffy, P.A., Martin, A., O'Brien, L., Byun, H.S., Bittman, R. and Brindley, D.N. (1995) Mol. Pharmacol. 47, 833-839), an effect that might be secondary to Ca2+-mobilization.  相似文献   
2.
Peroxisomes were purified from liver homogenates from rats, treated with the peroxisome proliferator clofibrate, by a combination of differential centrifugation and isopycnic centrifugation in iso-osmotic self-generating Percoll gradients. Structural integrity of the peroxisomes appeared to be preserved as evidenced by a high degree of catalase latency, the absence of catalase release during purification and the exclusion of inulin (mol.wt. +/- 5000). Spaces for water and solutes were measured after incubation of the peroxisomes in iso-osmotic sucrose with radioactive water or solutes and separation of the organelles from their media by centrifugation through an organic layer. Extraperoxisomal water was corrected for by the use of radioactive dextran or inulin. The sucrose, glucose, urea, methanol and acetate-accessible spaces were identical, suggesting that these spaces represent the volume in which molecules that can cross the membrane distribute. This volume equalled 50-65% of the water space. Urate and NAD+, a cofactor of peroxisomal beta-oxidation of fatty acids, also distributed in this volume, but were also partly bound. Urate and NAD+ binding was not abolished by sonication, which released the bulk of matrix catalase activity, but NAD+ binding was seriously diminished. The peroxisomal water and sucrose spaces were estimated to be 107 microliters and 55 microliters per g of liver tissue from a clofibrate-treated rat. From quantitative morphometric data [Anthony, Schmucker, Mooney & Jones (1978) J. Lipid Res. 19, 154-165] and our marker enzyme analyses, as well as from our experimentally determined water spaces of mitochondrial and microsomal fractions, it could be calculated that the volume contamination by lysosomes, mitochondria and microsomes did not exceed 1, 8 and 6% respectively. Our data indicate that apparently intact peroxisomes are permeable to a number of small molecules, including NAD+. Whether the NAD+-binding sites in sonicated peroxisomes mirror the likely existence of a membrane carrier requires further investigation.  相似文献   
3.
1. Subfractionation by isopycnic density-gradient centrifugation in self-generating Percoll gradients of peroxisome-rich fractions prepared by differential centrifugation confirmed the presence of acyl-CoA synthetase in peroxisomes. Peroxisomes did not contain nicotinamide or adenine nucleotides other than CoA. 2. The gradient fractions most enriched in peroxisomes were pooled and the peroxisomes sedimented by centrifugation, resulting in a 50-fold-purified peroxisomal preparation as revealed by marker enzyme analysis. 3. Palmitate oxidation by intact purified peroxisomes was CoA-dependent, whereas palmitoyl-CoA oxidation was not, demonstrating that the peroxisomal CoA was available for the thiolase reaction, located in the peroxisomal matrix, but not for acyl-CoA synthetase. This suggests that the latter enzyme is located at the cytoplasmic side of the peroxisomal membrane. 4. Additional evidence for this location of peroxisomal acyl-CoA synthetase was as follows. Mechanical disruption of purified peroxisomes resulted in the release of catalase from the broken organelles, but not of acyl-CoA synthetase, indicating that the enzyme was membrane-bound. Acyl-CoA synthetase was not latent, despite the fact that at least one of its substrates appears to have a limited membrane permeability, as evidenced by the presence of CoA in purified peroxisomes. Finally, Pronase, a proteinase that does not penetrate the peroxisomal membrane, almost completely inactivated the acyl-CoA synthetase of intact peroxisomes.  相似文献   
4.
5.
Dietary n?3 polyunsaturated fatty acids (PUFA) are major components of cell membranes and have beneficial effects on human health. Docosahexaenoic acid (DHA; 22:6n?3) is the most biologically important n?3 PUFA and can be synthesized from its dietary essential precursor, α-linolenic acid (ALA; 18:3n?3). Gender differences in the efficiency of DHA bioconversion have been reported, but underlying molecular mechanisms are unknown. We compared the capacity for DHA synthesis from ALA and the expression of related enzymes in the liver and cerebral cortex between male and female rats. Wistar rats, born with a low-DHA status, were supplied with a suboptimal amount of ALA from weaning to 8 weeks of age. Fatty acid composition was determined by gas chromatography, the mRNA expression of different genes involved in PUFA metabolism was determined by RT-PCR (low-density array) and the expression of proteins was determined by Western blot analysis. At 8 weeks, DHA content was higher (+20 to +40%) in each phospholipid class of female livers compared to male livers. The “Δ4,” Δ5 and Δ6 desaturation indexes were 1.2–3 times higher in females than in males. The mRNA expression of Δ5- and Δ6-desaturase genes was 3.8 and 2.5 times greater, respectively, and the Δ5-desaturase protein was higher in female livers (+50%). No gender difference was observed in the cerebral cortex. We conclude that female rats replete their DHA status more readily than males, probably due to a higher expression of liver desaturases. Our results support the hypothesis on hormonal regulation of PUFA metabolism, which should be taken into account for specific nutritional recommendations.  相似文献   
6.
The mammalian multifunctional protein-2 (MFP-2, also called multifunctional enzyme 2, D-bifunctional enzyme or 17-beta-estradiol dehydrogenase type IV) was identified by several groups about a decade ago. It plays a central role in peroxisomal beta-oxidation as it handles most, if not all, peroxisomal beta-oxidation substrates. Deficiency of this enzyme in man causes a severe developmental syndrome with abnormalities in several organs but in particular in the brain, leading to death within the first year of life. Accumulation of branched-long-chain fatty acids and very-long-chain fatty acids and a disturbed synthesis of bile acids were documented in these patients. A mouse model with MFP-2 deficiency only partly phenocopies the human disease. Although the expected metabolic abnormalities are present, no neurodevelopmental aberrations are observed. However, the survival of these mice into adulthood allowed to document the importance of this enzyme for the normal functioning of the brain, eyes and testis. In the present review, the identification and biochemical characteristics of MFP-2, and the consequences of MFP-2 dysfunction in humans and in mice will be discussed.  相似文献   
7.
In a search for possible endogenous ligands of nuclear receptors that are activated by peroxisome proliferators (PPARs), a solid phase binding assay was developed employing recombinant mouse PPAR-alpha, containing a myc-epitope, a histidine repeat and a kinase A domain. After in vitro labelling with 32P-gamma-ATP, the binding of purified 32P-PPAR-alpha to a panel of different natural and synthetic lipids, immobilized on silica layers, was evaluated. Autoradiographs of the silica layers revealed binding to two main classes of lipophilic compounds. A first class comprised (poly)unsaturated fatty acids. Compounds belonging to a second class were characterized by the presence of an overall positive charge such as long chain amines, sphingoid bases (sphingenine), and lysoglycosphingolipids (psychosine). PPAR-alpha did not bind to N-acylated sphingoid bases (ceramides) or to sphingenine phosphorylated at the primary hydroxy group (sphingenine-1-phosphate). The binding of PPAR-alpha to sphingoid bases might be of interest given the role of PPAR-alpha and sphingolipids in various cellular processes.  相似文献   
8.
Sphingosine-1-phosphate lyase (SGPL1) is the last enzyme in the catabolism of sphingolipids. It catalyzes the retroaldolic cleavage of long chain base phosphates into phosphoethanolamine and a fatty aldehyde. In this article we report on an easy and sensitive procedure to determine SPL activity. The assays uses C17-sphinganine-1-phosphate as substrate and the aldehyde product, pentadecanal, is quantified as its pentafluorobenzyloxime derivative by GC/MS. Derivatization of pentadecanal is performed as a one-step reaction, and the oxime product is directly injected for GC/MS analysis without any further purification. Acquisition in selected ion monitoring mode allows very high sensitivity, with a limit of detection of 281fmol. The assay is linear with both protein concentration and incubation time up to 20μg and 40min, respectively. The K(m) value obtained (6μM) is similar to that for the natural substrate sphingosine-1-phosphate. Using this method, FTY720 and deoxypyridoxine phosphate inhibited SPL with similar potencies to those reported.  相似文献   
9.

Rationale

Hematopoietic stem/progenitor cells (HSPC) are responsible for maintaining the blood system as a result of their self-renewal and multilineage differentiation capacity. Recently, studies have suggested that HDL cholesterol may inhibit and impaired cholesterol efflux may increase HSPC proliferation and differentiation.

Objectives

We hypothesized that LDL may enhance HSPC proliferation and differentiation while HDL might have the opposing effect which might influence the size of the pool of inflammatory cells.

Methods and Results

HSPC number and function were studied in hypercholesterolemic LDL receptor knockout (LDLr−/−) mice on high fat diet. Hypercholesterolemia was associated with increased frequency of HSPC, monocytes and granulocytes in the peripheral blood (PB). In addition, an increased proportion of BM HSPC was in G2M of the cell cycle, and the percentage of HSPC and granulocyte-macrophage progenitors (GMP) increased in BM of LDLr−/− mice. When BM Lin-Sca-1+cKit+ (i.e. “LSK”) cells were cultured in the presence of LDL in vitro we also found enhanced differentiation towards monocytes and granulocytes. Furthermore, LDL promoted lineage negative (Lin−) cells motility. The modulation by LDL on HSPC differentiation into granulocytes and motility was inhibited by inhibiting ERK phosphorylation. By contrast, when mice were infused with human apoA-I (the major apolipoprotein of HDL) or reconstituted HDL (rHDL), the frequency and proliferation of HSPC was reduced in BM in vivo. HDL also reversed the LDL-induced monocyte and granulocyte differentiation in vitro.

Conclusion

Our data suggest that LDL and HDL have opposing effects on HSPC proliferation and differentiation. It will be of interest to determine if breakdown of HSPC homeostasis by hypercholesterolemia contributes to inflammation and atherosclerosis progression.  相似文献   
10.
In mammals, ceramide kinase (CerK)-mediated phosphorylation of ceramide is the only known pathway to ceramide-1-phosphate (C1P), a recently identified signaling sphingolipid metabolite. To help delineate the roles of CerK and C1P, we knocked out the gene of CerK in BALB/c mice by homologous recombination. All in vitro as well as cell-based assays indicated that CerK activity is completely abolished in Cerk-/- mice. Labeling with radioactive orthophosphate showed a profound reduction in the levels of de novo C1P formed in Cerk-/- macrophages. Consistently, mass spectrometry analysis revealed a major contribution of CerK to the formation of C16-C1P. However, the significant residual C1P levels in Cerk-/- animals indicate that alternative routes to C1P exist. Furthermore, serum levels of proapoptotic ceramide in these animals were significantly increased while levels of dihydroceramide as the biosynthetic precursor were reduced. Previous literature pointed to a role of CerK or C1P in innate immune cell function. Using a variety of mechanistic and disease models, as well as primary cells, we found that macrophage- and mast cell-dependent readouts are barely affected in the absence of CerK. However, the number of neutrophils was strikingly reduced in blood and spleen of Cerk-/- animals. When tested in a model of fulminant pneumonia, Cerk-/- animals developed a more severe disease, lending support to a defect in neutrophil homeostasis following CerK ablation. These results identify ceramide kinase as a key regulator of C1P, dihydroceramide and ceramide levels, with important implications for neutrophil homeostasis and innate immunity regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号