首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   5篇
  68篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   10篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1979年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
1.
2.

Background

Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases and acts upon the cells. Response to cfDNA depends on concentrations and levels of the damage within cfDNA. Oxidized extracellular DNA acts as a stress signal and elicits an adaptive response.

Principal Findings

Here we show that oxidized extracellular DNA stimulates the survival of MCF-7 tumor cells. Importantly, in cells exposed to oxidized DNA, the suppression of cell death is accompanied by an increase in the markers of genome instability. Short-term exposure to oxidized DNA results in both single- and double strand DNA breaks. Longer treatments evoke a compensatory response that leads to a decrease in the levels of chromatin fragmentations across cell populations. Exposure to oxidized DNA leads to a decrease in the activity of NRF2 and an increase in the activity of NF-kB and STAT3. A model that describes the role of oxidized DNA released from apoptotic cells in tumor biology is proposed.

Conclusions/Significance

Survival of cells with an unstable genome may substantially augment progression of malignancy. Further studies of the effects of extracellular DNA on malignant and normal cells are warranted.  相似文献   
3.
Savannah regions are predicted to undergo changes in precipitation patterns according to current climate change projections. This change will affect leaf phenology, which controls net primary productivity. It is of importance to study this since savannahs play an important role in the global carbon cycle due to their areal coverage and can have an effect on the food security in regions that depend on subsistence farming. In this study we investigate how soil moisture, mean annual precipitation, and day length control savannah phenology by developing a lagged time series model. The model uses climate data for 15 flux tower sites across four continents, and normalized difference vegetation index from satellite to optimize a statistical phenological model. We show that all three variables can be used to estimate savannah phenology on a global scale. However, it was not possible to create a simplified savannah model that works equally well for all sites on the global scale without inclusion of more site specific parameters. The simplified model showed no bias towards tree cover or between continents and resulted in a cross-validated r2 of 0.6 and root mean squared error of 0.1. We therefore expect similar average results when applying the model to other savannah areas and further expect that it could be used to estimate the productivity of savannah regions.  相似文献   
4.
Forests are major carbon stores on a global scale but there are significant uncertainties about changes in carbon flux through time and the relative contributions of drivers such as land use, climate and atmospheric CO2. We used the dynamic vegetation model LPJ-GUESS to test the relative influence of CO2 increase, temperature increase and management on carbon storage in living biomass in an unmanaged European temperate deciduous forest. The model agreed well with living biomass reconstructed from forest surveys and maximum biomass values from other studies. High-resolution climate data from both historical records and general circulation models were used to force the model and was manipulated for some simulations to allow relative contributions of individual drivers to be assessed. Release from management was the major driver of carbon storage for most of the historical period, whereas CO2 took over as the most important driver in the last 20 years. Relatively, little of the observed historical increase in carbon stocks was attributable to increased temperature. Future simulations using IPCC RCP4.5 and RCP8.5 scenarios indicated that carbon stocks could increase by as much as 3 kg C m?2 by the end of the century, which is likely to be driven by CO2 increase. This study suggests that unmanaged semi-natural woodland in Europe can be a major potential carbon sink that has been previously underestimated. Increasing the area of unmanaged forest would provide carbon sink services during recovery from timber extraction, while long-term protection would ensure carbon stocks are maintained.  相似文献   
5.
Fibrillarin is an evolutionarily-conserved and obligatory protein component of eukaryotic cell nucleoli involved in pre-rRNA processing and methylation. In vertebrates the fibrillarin molecule contains two cysteine residues (Cys99 and Cys268) whose sulfhydryl groups are able to establish intramolecular -S-S- bridges. However, the functional state of fibrillarin with reduced or oxidized thiol groups is still practically unstudied. Besides, there are no data in the literature concerning existence of the -S-S- fibrillarin form in human cells. To answer these questions, we used plasmids encoding native human fibrillarin and its mutant form devoid of cysteine residues (fibrillarinC99/268S) fused with EGFP for temporary transfection of HeLa cells. The mobile fraction localizing the enzymatically active protein molecules and the fluorescence half-recovery time characterizing the rate of enzymatic reactions were determined by the FRAP technique using a confocal laser scanning microscope. Measurements were carried out at 37 and 27°C. The results show that the fibrillarin pool in HeLa cells includes two protein forms, with reduced SH groups and with oxidized SH groups forming intramolecular -S-S- bridges between Cys99 and Cys268. However, the absence of Cys99 and Cys268 has no effect on intracellular localization of fibrillarin and its main dynamic parameters. The human fibrillarin form without disulfide bridges is included into the mobile protein fraction and is consistent with its functionally active state.  相似文献   
6.
Quantitative dot hybridization was used to estimate the rDNA copy number in brain tissues of five inbred mouse strains (AKR/JY, NZB/B1OrlY, CBA/CaLacY, 101/HY, and 129/JY), which were obtained from the collection of the Research Center of Biomedical Technologies (Y). In each strain, 9–12 mice aged 1–2 months were examined. The rDNA copy number per diploid genome in strains AKR (range 105–181, mean ± SD 136 ± 27) and NZB (129–169, 148 ± 12) was significantly lower than in strains CBA (172–267, 209 ± 31), 101 (179–270, 217 ± 30), and 129 (215–310, 264 ± 33). Mice of strain NZB were relatively homogeneous in this trait (CV = 8.1%). Strains AKR, CBA, 101, and 129 displayed significant between-group differences, CV varying from 12.5 to 19.9%. The same DNA specimens were digested with MspI or HpaII and used to estimate the extent of methylation of the 28S rDNA region. Regardless of the strain, all mice could be classed into two groups. One group (20 mice) had a methylated fraction accounting for less than 8% of rDNA and included all nine mice of strain NZB, seven out of nine mice of strain 101, and three out of ten mice of strain 129. In the other group (29 mice of strains AKR, CBA, 101, and 109), the methylated fraction varied from 18 to 38%. A possible role of methylation and the genome dosage of ribosomal genes in phenotypic variation (quantitative trait variation) of inbred mouse strains is discussed.  相似文献   
7.
8.
Short-rotation energy forestry is one of the potential ways for management of abandoned agricultural areas. It helps sequestrate carbon and mitigate human-induced climate changes. Owing to symbiotic dinitrogen (N2) fixation by actinomycetes and the soil fertilizing capacity and fast biomass growth of grey alders, the latter can be suitable species for short-rotation forestry. In our study of a young grey alder stand (Alnus incana (L.) Moench) on abandoned arable land in Estonia we tested the following hypotheses: (1) afforestation of abandoned agricultural land by grey alder significantly affects the soil nitrogen (N) status already during the first rotation period; (2) input of symbiotic fixation covers an essential part of the plant annual N demand of the stand; (3) despite a considerable N input into the ecosystem of a young alder stand, there will occur no significant environmental hazards (N leaching or N2O emissions). The first two hypotheses can be accepted: there was a significant increase in N and C content in the topsoil (from 0.11 to 0.14%, and from 1.4 to 1.7%, respectively), and N fixation (151.5 kg N ha−1 yr−1) covered about 74% of the annual N demand of the stand. The third hypothesis met support as well: N2O emissions (0.5 kg N ha−1 yr−1) were low, while most of the annual gaseous N losses were in the form of N2 (73.8 kg N ha−1 yr−1). Annual average NO3-N leaching was 15 kg N ha−1 yr−1 but the N that leached from topsoil accumulated in deeper soil layers. The soil acidifying effect of alders was clearly evident; during the 14-year period soil acidity increased 1.3 units in the upper 0-10 cm topsoil layer.  相似文献   
9.
Fine root acclimation to different environmental conditions is crucial for growth and sustainability of forest trees. Relatively small changes in fine root standing biomass (FRB), morphology or mycorrhizal symbiosis may result in a large change in forest carbon, nutrient and water cycles. We elucidated the changes in fine root traits and associated ectomycorrhizal (EcM) fungi in 12 Norway spruce stands across a climatic and N deposition gradient from subarctic‐boreal to temperate regions in Europe (68°N–48°N). We analysed the standing FRB and the ectomycorrhizal root tip biomass (EcMB, g m?2) simultaneously with measurements of the EcM root morphological traits (e.g. mean root length, root tissue density (RTD), N% in EcM roots) and frequency of dominating EcM fungi in different stands in relation to climate, soil and site characteristics. Latitude and N deposition explained the greatest proportion of variation in fine root traits. EcMB per stand basal area (BA) increased exponentially with latitude: by about 12.7 kg m?2 with an increase of 10° latitude from southern Germany to Estonia and southern Finland and by about 44.7 kg m?2 with next latitudinal 10° from southern to northern Finland. Boreal Norway spruce forests had 4.5 to 11 times more EcM root tips per stand BA, and the tips were 2.1 times longer, with 1.5 times higher RTD and about 1/3 lower N concentration. There was 19% higher proportion of root tips colonized by long‐distance exploration type forming EcM fungi in the southern forests indicating importance of EcM symbiont foraging strategy in fine root nutrient acquisition. In the boreal zone, we predict ca. 50% decrease in EcMB per stand BA with an increase of 2 °C annual mean temperature. Different fine root foraging strategies in boreal and temperate forests highlight the importance of complex studies on respective regulatory mechanisms in changing climate.  相似文献   
10.
The phylogeny of insects, one of the most spectacular radiations of life on earth, has received considerable attention. However, the evolutionary roots of one intriguing group of insects, the twisted-wing parasites (Strepsiptera), remain unclear despite centuries of study and debate. Strepsiptera exhibit exceptional larval developmental features, consistent with a predicted step from direct (hemimetabolous) larval development to complete metamorphosis that could have set the stage for the spectacular radiation of metamorphic (holometabolous) insects. Here we report the sequencing of a Strepsiptera genome and show that the analysis of sequence-based genomic data (comprising more than 18 million nucleotides from nearly 4,500 genes obtained from a total of 13 insect genomes), along with genomic metacharacters, clarifies the phylogenetic origin of Strepsiptera and sheds light on the evolution of holometabolous insect development. Our results provide overwhelming support for Strepsiptera as the closest living relatives of beetles (Coleoptera). They demonstrate that the larval developmental features of Strepsiptera, reminiscent of those of hemimetabolous insects, are the result of convergence. Our analyses solve the long-standing enigma of the evolutionary roots of Strepsiptera and reveal that the holometabolous mode of insect development is more malleable than previously thought.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号