首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   4篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   4篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1997年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1972年   1篇
  1966年   1篇
排序方式: 共有66条查询结果,搜索用时 31 毫秒
1.
A dependence of the plasmalemma redox activity, determined by the reduction of external electron acceptors (ferricyanide, nitro-blue tetrazolium), on the energy state of the cell, which was modified by light conditions or introduction of glucose into the media, was shown on leaves of Elodea canadensis Rich. Glucose (10 m M ) and light (40 W m-2) caused hyperpolarization of the membrane potential and stimulated the redox activity of the plasmalemma. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) completely inhibited the light activation of electrogenic and redox functions of the plasmalemma. The light saturation intensity for membrane potential and ferricyanide reductase activity was 10–30% of the light saturation of photosynthesis. Membrane potential, K+ transport and plasmalemma redox activity changed in parallel in response to light and darkness and when DCMU was added. Ferricyanide reductase activity is suggested to be a simple parameter for characterizing the energy state of the cell. The functional significance of the light-induced hyperpolarization of the membrane potential is discussed.  相似文献   
2.
The potassium salt-induced transient increase of delayed fluorescence yield was studied in pea chloroplasts treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea.A simple kinetic model is proposed to account for the actinic light intensity dependence of the delayed fluorescence enhancement by the transmembrane diffusion potential induced by sudden salt addition. The electric field dependence of the rate constants for the recombination of primary separated charges with and without subsequent electronic excitation of reaction center chlorophyll was obtained.From the value of enhancement of delayed fluorescence by salt concentration gradients at saturating actinic light intensity, it is concluded that the distance, normal to thylakoid membrane surface, between the primary acceptor and the donor of Photosystem II is smaller than the membrane thickness.  相似文献   
3.
4.
5.
Origins of Life and Evolution of Biospheres - Syntheses under shock in nitrogen bubbled samples of the water – formamide – bicarbonate – sodium hydroxide system at...  相似文献   
6.
AhpD, a protein with two cysteine residues, is required for physiological reduction of the Mycobacterium tuberculosis alkylhydroperoxidase AhpC. AhpD also has an alkylhydroperoxidase activity of its own. The AhpC/AhpD system provides critical antioxidant protection, particularly in the absence of the catalase-peroxidase KatG, which is suppressed in most isoniazid-resistant strains. Based on the crystal structure, we proposed recently a catalytic mechanism for AhpD involving a proton relay in which the Glu118 carboxylate group, via His137 and a water molecule, deprotonates the catalytic residue Cys133 (Nunn, C. M., Djordjevic, S., Hillas, P. J., Nishida, C., and Ortiz de Montellano, P. R. (2002) J. Biol. Chem. 277, 20033-20040). A possible role for His132 in subsequent formation of the Cys133-Cys130 disulfide bond was also noted. To test this proposed mechanism, we have expressed the H137F, H137Q, H132F, H132Q, E118F, E118Q, C133S, and C130S mutants of AhpD, determined the crystal structures of the H137F and H132Q mutants, estimated the pKa values of the cysteine residues, and defined the kinetic properties of the mutant proteins. The collective results strongly support the proposed catalytic mechanism for AhpD.  相似文献   
7.
LNA oligonucleotides [1] can be used for targeting to double stranded DNA by the "strand invasion" mechanism. We used affinity modification by reactive oligonucleotide conjugates for investigation of oligonucleotides interaction with structured DNA. The tested LNAs and oligonucleotides of the same sequence were assayed as anti-mdr1 drugs in different cell cultures. One of the oligos, LNA79 strongly inhibited mdr1 induction in Hela cells and totally prevented activation of mdr1 in K-562.  相似文献   
8.
Water deficit is one of the most important environmental factors limiting sustainable crop yields and it requires a reliable tool for fast and precise quantification. In this work we use simultaneously recorded signals of photoinduced prompt fluorescence (PF) and delayed fluorescence (DF) as well as modulated reflection (MR) of light at 820nm for analysis of the changes in the photosynthetic activity in detached bean leaves during drying. Depending on the severity of the water deficit we identify different changes in the primary photosynthetic processes. When the relative water content (RWC) is decreased to 60% there is a parallel decrease in the ratio between the rate of excitation trapping in the Photosystem (PS) II reaction center and the rate of reoxidation of reduced PSII acceptors. A further decrease of RWC to 20% suppresses the electron transfer from the reduced plastoquinone pool to the PSI reaction center. At RWC below values 15%, the reoxidation of the photoreduced primary quinone acceptor of PSII, Q(A)(-), is inhibited and at less than 5%, the primary photochemical reactions in PSI and II are inactivated. Using the collected sets of PF, DF and MR signals, we construct and train an artificial neural network, capable of recognizing the RWC in a series of "unknown" samples with a correlation between calculated and gravimetrically determined RWC values of about R(2)≈0.98. Our results demonstrate that this is a reliable method for determination of RWC in detached leaves and after further development it could be used for quantifying of drought stress of crop plants in situ. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   
9.
10.
V Koshkin  SN Krylov 《PloS one》2012,7(7):e41368
Multidrug resistance driven by ABC membrane transporters is one of the major reasons for treatment failure in human malignancy. Some limited evidence has previously been reported on the cell cycle dependence of ABC transporter expression. However, it has never been demonstrated that the functional activity of these transporters correlates with the cell cycle position. Here, we studied the rate of intrinsic ABC transport in different phases of the cell cycle in cultured MCF-7 breast cancer cells. The rate was characterized in terms of the efflux kinetics from cells loaded with an ABC transporter substrate. As averaging the kinetics over a cell population could lead to errors, we studied kinetics of ABC transport at the single-cell level. We found that the rate of ABC transport in MCF-7 cells could be described by Michaelis-Menten kinetics with two classical parameters, V(max) and K(M). Each of these parameters showed similar unimodal distributions with different positions of maxima for cell subpopulations in the 2c and 4c states. Compared to the 2c cells, the 4c cells exhibited greater V(max) values, indicating a higher activity of transport. They also exhibited a greater V(max)/K(M) ratio, indicating a higher efficiency of transport. Our findings suggest that cell cycle-related modulation of MDR may need to be taken into account when designing chemotherapy regimens which include cytostatic agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号