首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2018年   1篇
  2012年   1篇
  2009年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 140 毫秒
1
1.

Background

Understanding the mechanisms involved in climacteric fruit ripening is key to improve fruit harvest quality and postharvest performance. Kiwifruit (Actinidia deliciosa cv. ‘Hayward’) ripening involves a series of metabolic changes regulated by ethylene. Although 1-methylcyclopropene (1-MCP, inhibitor of ethylene action) or ozone (O3) exposure suppresses ethylene-related kiwifruit ripening, how these molecules interact during ripening is unknown.

Results

Harvested ‘Hayward’ kiwifruits were treated with 1-MCP and exposed to ethylene-free cold storage (0?°C, RH 95%) with ambient atmosphere (control) or atmosphere enriched with O3 (0.3?μL?L??1) for up to 6?months. Their subsequent ripening performance at 20?°C (90% RH) was characterized. Treatment with either 1-MCP or O3 inhibited endogenous ethylene biosynthesis and delayed fruit ripening at 20?°C. 1-MCP and O3 in combination severely inhibited kiwifruit ripening, significantly extending fruit storage potential. To characterize ethylene sensitivity of kiwifruit following 1-MCP and O3 treatments, fruit were exposed to exogenous ethylene (100?μL?L??1, 24?h) upon transfer to 20?°C following 4 and 6?months of cold storage. Exogenous ethylene treatment restored ethylene biosynthesis in fruit previously exposed in an O3-enriched atmosphere. Comparative proteomics analysis showed separate kiwifruit ripening responses, unraveled common 1-MCP- and O3-dependent metabolic pathways and identified specific proteins associated with these different ripening behaviors. Protein components that were differentially expressed following exogenous ethylene exposure after 1-MCP or O3 treatment were identified and their protein-protein interaction networks were determined. The expression of several kiwifruit ripening related genes, such as 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1), ethylene receptor (ETR1), lipoxygenase (LOX1), geranylgeranyl diphosphate synthase (GGP1), and expansin (EXP2), was strongly affected by O3, 1-MCP, their combination, and exogenously applied ethylene.

Conclusions

Our findings suggest that the combination of 1-MCP and O3 functions as a robust repressive modulator of kiwifruit ripening and provide new insight into the metabolic events underlying ethylene-induced and ethylene-independent ripening outcomes.
  相似文献   
2.
Olive varieties ‘Koroneiki’, ‘Kalamata’, ‘Mastoidis’ and ‘Amigdalolia’ were employed in two experiments for 3 years to assess the effect of temperature on olive pollen germination and tube growth in relation to relative humidity and genotype. Pollen samples were subjected to pre-incubation at 10, 20, 30 or 40 °C in combination with decreased air relative humidity – 80, 40, 30 or 20%, respectively – for 24 h to simulate temperature stress that is observed during pollen dispersal; and subsequently in vitro cultured. In the second experiment, pollen was exposed at 15, 20, 25 and 30 °C for 24 h in vitro to evaluate pollen response in conditions of water and nutrients availability and to determine the optimum pollen germination and tube growth temperatures for each cultivar. The highest pre-incubation temperature treatment (40 °C) prevented pollen germination in ‘Koroneiki’ and ‘Mastoidis’, with the less affected varieties (‘Amigdalolia’ and ‘Kalamata’) having average germination percentages of only 7.6 and 2%, respectively. Pre-incubation at 30 °C had a negative impact on pollen germination in ‘Koroneiki’ (?65%), ‘Kalamata’ (?20%) and ‘Amigdalolia’ (?72%) compared to the control (20 °C). Pollen pre-incubation at 40 °C decreased significantly the pollen tube length in ‘Kalamata’ (?50%) and ‘Amigdalolia’ (?52%). In the second experiment, in vitro pollen germination increased after incubation at 25 °C for ‘Koroneiki’ (+6%), ‘Mastoidis’ (+52%), ‘Kalamata’ (+10%) and ‘Amigdalolia’ (+10%) compared to the control (20 °C). At 30 °C germination percentages for ‘Mastoidis’, ‘Kalamata’ and ‘Amigdalolia’ were 8, 6 and 14% higher, respectively, compared to the control (20 °C). Pollen tube length also increased with incubation temperature for all of the studied cultivars. Based on the cumulative stress response index (CSRI) that was calculated for high temperature stress the varieties were classified: ‘Mastoidis’ and ‘Kalamata’ as tolerant and ‘Koroneiki’ and ‘Amigdalolia’ as intermediate at 30 °C while all studied cultivars were sensitive at 40 °C. The observed strong genotype-differentiated response in high and low temperature stress could be exploited by plant breeders towards producing new tolerant olive varieties.  相似文献   
3.
Factors affecting successful establishment in vitro, rapid proliferation and rooting of apricot cultivar ‘Bebecou’ were studied. Ethanol and NaOCl were applied in several combinations for disinfection; chilling, plant growth regulators BA, IAA and GA3, antibiotics, different culture vessels and systems of subculture were evaluated for the optimization of shoot proliferation and the auxins NAA and IBA were assessed for root induction. The highest number of new microshoots/explant (18.7) was obtained in a culture medium supplemented with 2.2 μM BA+0.57 μM IAA after 300 h of chilling. The effect of GA3 (11.4 μM) on shoot proliferation was positive in combination with 4.4 or 8.9 μM BA. Shoot length and productivity were highest at 2.2 μM BA+11.4 μM GA3+0.57 μM IAA and at 2.2 μM BA+0.57 μM IAA, respectively and decreased as cytokinin concentration increased. The antibiotic ‘Na-cefotaxime’ had a minimal impact on shoot growth when used at the lowest concentration (250 mg l−1). Subculture every 2 weeks in a medium supplemented with 2.2 μM BA and 0.57 μM IAA was more efficient for shoot induction than alternation of 20 days culture in a propagation medium supplemented with 2.2 μM BA and 10 days culture in an elongation medium supplemented with 1.1 μM BA and 5.71 μM IAA. The highest number of roots/shoot (8.1) was recorded at 19.6 μM IBA.  相似文献   
4.
Post-harvest ozone application has recently been shown to inhibit the onset of senescence symptoms on fleshy fruit and vegetables; however, the exact mechanism of action is yet unknown. To characterize the impact of ozone on the post-harvest performance of kiwifruit (Actinidia deliciosa cv. 'Hayward'), fruits were cold stored (0 °C, 95% relative humidity) in a commercial ethylene-free room for 1, 3, or 5 months in the absence (control) or presence of ozone (0.3 μl l(-1)) and subsequently were allowed to ripen at a higher temperature (20 °C), herein defined as the shelf-life period, for up to 12 days. Ozone blocked ethylene production, delayed ripening, and stimulated antioxidant and anti-radical activities of fruits. Proteomic analysis using 1D-SDS-PAGE and mass spectrometry identified 102 kiwifruit proteins during ripening, which are mainly involved in energy, protein metabolism, defence, and cell structure. Ripening induced protein carbonylation in kiwifruit but this effect was depressed by ozone. A set of candidate kiwifruit proteins that are sensitive to carbonylation was also discovered. Overall, the present data indicate that ozone improved kiwifruit post-harvest behaviour, thus providing a first step towards understanding the active role of this molecule in fruit ripening.  相似文献   
5.
The effect of basal media (Woody Plant Medium (WPM), Quoirin and Lepoivre (QL) and Olive Medium (OM)) and of various concentrations of cytokinins (6-benzyladenine (BA), zeatin, 6-(,-dimethylallyl-amino) purine (2iP)), solely or in combinations with each other and with gibberellic acid (GA3), on in vitro shoot proliferation of the greek olive cultivar `Chondrolia Chalkidikis' was investigated. WPM proved to be the most effective one, resulting in better morphological appearance of the microshoots produced. The highest number of new microshoots/explant (1.68), with a 3.0 cm shoot height and a 4.2 proliferation rate, was obtained when this medium was supplemented with 20 M zeatin. The number of microshoots/explant and proliferation rate increased to 1.85 and 6.8, respectively, by using the combination of 5–20 M zeatin with 1 M BA, but shoot height was reduced. 2iP was the least effective of the cytokinins tested. Combination of 20 M zeatin with 10 M GA3 affected positively shoot proliferation resulting in 1.80 microshoots/explant, 3.0 cm shoot height and 7.0 proliferation rate. However, the same concentration of GA3 in combination with 1 M BA reduced the number of new microshoots/explant (0.48) as well as the proliferation rate (2.4), although shoot height remained nearly the same (2.7). The effect of indole-3-butyric acid (IBA), -naphthaleneacetic acid (NAA) and putrescine on root induction was also studied. A rooting percentage of up to 70% and 2.3 roots/microshoot were achieved by the combination of 12 M IBA + 3 M NAA, however, abscission of shoot tips and leaves appeared. Both variables were increased, up to 93% and 4.0, respectively, by the addition of 30 M putrescine in the medium, without any undesired side effect. After acclimatization, survival of rooted microshoots was high (90%) while that of non-rooted ones was low (30%).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号