排序方式: 共有235条查询结果,搜索用时 15 毫秒
1.
Varun Prabhu Pragya Srivastava Neelu Yadav Michael Amadori Andrea Schneider Athul Seshadri Jason Pitarresi Rachael Scott Honghao Zhang Shahriar Koochekpour Raghu Gogada Dhyan Chandra 《Mitochondrion》2013,13(5):493-499
We recently demonstrated that resveratrol induces caspase-dependent apoptosis in multiple cancer cell types. Whether apoptosis is also regulated by other cell death mechanisms such as autophagy is not clearly defined. Here we show that inhibition of autophagy enhanced resveratrol-induced caspase activation and apoptosis. Resveratrol inhibited colony formation and cell proliferation in multiple cancer cell types. Resveratrol treatment induced accumulation of LC3-II, which is a key marker for autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased resveratrol-mediated caspase activation and cell death in breast and colon cancer cells. Inhibition of autophagy by silencing key autophagy regulators such as ATG5 and Beclin-1 enhanced resveratrol-induced caspase activation. Mechanistic analysis revealed that Beclin-1 did not interact with proapoptotic proteins Bax and Bak; however, Beclin-1 was found to interact with p53 in the cytosol and mitochondria upon resveratrol treatment. Importantly, resveratrol depleted ATPase 8 gene, and thus, reduced mitochondrial DNA (mtDNA) content, suggesting that resveratrol induces damage to mtDNA causing accumulation of dysfunctional mitochondria triggering autophagy induction. Together, our findings indicate that induction of autophagy during resveratrol-induced apoptosis is an adaptive response. 相似文献
2.
Yadugiri?V.?TiruvaimozhiEmail authorView authors OrcID profile Varun?Varma Mahesh?Sankaran 《Plant Ecology》2018,219(4):391-401
Atmospheric nitrogen (N) and phosphorus (P) deposition rates are predicted to drastically increase in the coming decades. The ecosystem level consequences of these increases will depend on how plant tissue nutrient concentrations, stoichiometry and investment in nutrient uptake mechanisms such as arbuscular mycorrhizal fungi (AMF) change in response to increased nutrient availability, and how responses differ between plant functional types. Using a factorial nutrient addition experiment with seedlings of multiple N-fixing and non-N-fixing tree species, we examined whether leaf chemistry and AMF responses differ between these dominant woody plant functional groups of tropical savanna and dry forest ecosystems. We found that N-fixers have remarkably stable foliar chemistry that stays constant with external input of nutrients. Non-N-fixers responded to N and N + P addition by increasing both concentrations and total amounts of foliar N, but showed a corresponding decrease in P concentrations while total amounts of foliar P stayed constant, suggesting a ‘dilution’ of tissue P with increased N availability. Non-N-fixers also showed an increase in N:P ratios with N and N + P addition, probably driven by both an increase in N and a decrease in P concentrations. AMF colonization decreased with N + P addition in non-N-fixers and increased with N and N + P addition in N-fixers, suggesting differences in their nutrient acquisition roles in the two plant functional groups. Our results suggest that N-fixers and non-N-fixers can differ significantly in their responses to N and P deposition, with potential consequences for future nutrient and carbon cycling in savanna and dry forest ecosystems. 相似文献
3.
4.
The effect of loop length on quadruplex stability has been studied when the G-rich strand is present along with its complementary C-rich strand, thereby resulting in competition between quadruplex and duplex structures. Using model sequences with loop lengths varying from T to T5, we carried out extensive FRET to discover the influence of loop length on the quadruplex-Watson Crick duplex competition. The binding data show an increase in the binding affinity of quadruplexes towards their complementary strands upon increasing the loop length. Our kinetic data reveal that unfolding of the quadruplex in presence of a complementary strand involves a contribution from a predominant slow and a small population of fast opening conformer. The contribution from the fast opening conformer increases upon increasing the loop length leading to faster duplex formation. FCS data show an increase in the interconversion between the quadruplex conformers in presence of the complementary strand, which shifts the equilibrium towards the fast opening conformer with an increase in loop length. The relative free-energy difference (Delta DeltaG(o)) between the duplex and quadruplex indicates that an increase in loop length favors duplex formation and out competes the quadruplex. 相似文献
5.
Varun B. Kothamachu Elisenda Feliu Carsten Wiuf Luca Cardelli Orkun S. Soyer 《PLoS computational biology》2013,9(11)
Achieving a complete understanding of cellular signal transduction requires deciphering the relation between structural and biochemical features of a signaling system and the shape of the signal-response relationship it embeds. Using explicit analytical expressions and numerical simulations, we present here this relation for four-layered phosphorelays, which are signaling systems that are ubiquitous in prokaryotes and also found in lower eukaryotes and plants. We derive an analytical expression that relates the shape of the signal-response relationship in a relay to the kinetic rates of forward, reverse phosphorylation and hydrolysis reactions. This reveals a set of mathematical conditions which, when satisfied, dictate the shape of the signal-response relationship. We find that a specific topology also observed in nature can satisfy these conditions in such a way to allow plasticity among hyperbolic and sigmoidal signal-response relationships. Particularly, the shape of the signal-response relationship of this relay topology can be tuned by altering kinetic rates and total protein levels at different parts of the relay. These findings provide an important step towards predicting response dynamics of phosphorelays, and the nature of subsequent physiological responses that they mediate, solely from topological features and few composite measurements; measuring the ratio of reverse and forward phosphorylation rate constants could be sufficient to determine the shape of the signal-response relationship the relay exhibits. Furthermore, they highlight the potential ways in which selective pressures on signal processing could have played a role in the evolution of the observed structural and biochemical characteristic in phosphorelays. 相似文献
6.
Priyanka?Varun S.?A.?Ranade Sangeeta?SaxenaEmail authorView authors OrcID profile
return OK on get 《Protoplasma》2017,254(6):2055-2070
Papaya leaf curl disease (PaLCuD) caused by papaya leaf curl virus (PaLCuV) not only affects yield but also plant growth and fruit size and quality of papaya and is one of the most damaging and economically important disease. Management of PaLCuV is a challenging task due to diversity of viral strains, the alternate hosts, and the genomic complexities of the viruses. Several management strategies currently used by plant virologists to broadly control or eliminate the viruses have been discussed. In the absence of such strategies in the case of PaLCuV at present, the few available options to control the disease include methods like removal of affected plants from the field, insecticide treatments against the insect vector (Bemisia tabaci), and gene-specific control through transgenic constructs. This review presents the current understanding of papaya leaf curl disease, genomic components including satellite DNA associated with the virus, wide host and vector range, and management of the disease and suggests possible generic resistance strategies. 相似文献
7.
8.
Kumar Varun Muthu Kumar S. P. Tiku Purnima Kaul 《International journal of peptide research and therapeutics》2021,27(4):2403-2415
International Journal of Peptide Research and Therapeutics - Elevation high plasma cholesterol plays a significant role in promoting the incidence of atherosclerosis and coronary heart disease. In... 相似文献
9.
YagE is a 33 kDa prophage protein encoded by CP4-6 prophage element in Escherichia coli K12 genome. Here, we report the structures of YagE complexes with pyruvate (PDB Id 3N2X) and KDGal (2-keto-3-deoxy galactonate) (PDB Id 3NEV) at 2.2A resolution. Pyruvate depletion assay in presence of glyceraldehyde shows that YagE catalyses the aldol condensation of pyruvate and glyceraldehyde. Our results indicate that the biochemical function of YagE is that of a 2-keto-3-deoxy gluconate (KDG) aldolase. Interestingly, E. coli K12 genome lacks an intrinsic KDG aldolase. Moreover, the over-expression of YagE increases cell viability in the presence of certain bactericidal antibiotics, indicating a putative biological role of YagE as a prophage encoded virulence factor enabling the survival of bacteria in the presence of certain antibiotics. The analysis implies a possible mechanism of antibiotic resistance conferred by the over-expression of prophage encoded YagE to E. coli. 相似文献
10.
Black Spot: a platform for automated and rapid estimation of leaf area from scanned images 总被引:1,自引:0,他引:1
Leaf area and its derivatives (e.g. specific leaf area) are widely used in ecological assessments, especially in the fields of plant–animal interactions, plant community assembly, ecosystem functioning and global change. Estimating leaf area is highly time-consuming, even when using specialized software to process scanned leaf images, because manual inputs are invariably required for scale detection and leaf surface digitisation. We introduce Black Spot Leaf Area Calculator (hereafter, Black Spot), a technique and stand-alone software package for rapid and automated leaf area assessment from images of leaves taken with standard flatbed scanners. Black Spot operates on comprehensive rule-sets for colour band ratios to carry out pixel-based classification which isolates leaf surfaces from the image background. Importantly, the software extracts information from associated image meta-data to detect image scale, thereby eliminating the need for time-consuming manual scale calibration. Black Spot’s output provides the user with estimates of leaf area as well as classified images for error checking. We tested this method and software combination on a set of 100 leaves of 51 different plant species collected from the field. Leaf area estimates generated using Black Spot and by manual processing of the images using an image editing software generated statistically identical results. Mean error rate in leaf area estimates from Black Spot relative to manual processing was ?0.4 % (SD = 0.76). The key advantage of Black Spot is the ability to rapidly batch process multi-species datasets with minimal user effort and at low cost, thus making it a valuable tool for field ecologists. 相似文献