首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   5篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2000年   4篇
  1999年   2篇
  1997年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1970年   1篇
  1966年   1篇
排序方式: 共有52条查询结果,搜索用时 46 毫秒
1.
The ultrastructure and respiratory activity of mitochondria in rice coleoptile grown in the presence and in the absence of an inibitor of mitochondrial protein synthesis (chloramphenicol) have been studied. It is shown that during the first 48 h of germination a rapid development of mitochondrial cristae takes place without notable influence of chloramphenicol on biogenesis of mitochondria. But the presence of the inhibitor has a significant effect in the subsequent period (48-144 h): a gradual and almost complete reduction of mitochondrial cristae is observed. These unusual "noncristate" mitochondria, although greatly lacking cytochrome oxidase, have a high respiratory activity. The respiration of "noncristate" mitochondria is resistant to KCN. It is supposed that chloramphenicol-induced rice coleoptile can be used as a new convenient object for studies of the nature of alternative oxidase as well as the biogenesis of mitochondria with cyanide-insensitive respiration.  相似文献   
2.
We investigated the dynamics of the activity of the polygalacturonidase inhibitor protein (PGIP) in apple fruits of six varieties differing in ripening time and correlated it with the degree of damage by the causative agent of fruit rot, Monilia fructigena. The apple varieties studied differed significantly in PGIP activity and degree of damage by Monilia fructigena. The rate of dissemination over fruit tissues was inversely related to PGIP activity. The resistance of apples to M. fructigena increased with ripening. The simultaneous increase in PGIP activity suggests its important role in the reduction of apple damage by fruit rot.  相似文献   
3.
Many apoptotic signals are known to induce release to cytosol of cytochrome c, a small mitochondrial protein with positively charged amino acid residues dominating over negatively charged ones. On the other hand, in this group, it was shown that prothymosin alpha (PT), a small nuclear protein where 53 of 109 amino acid residues are negatively charged, is truncated to form a protein of 99 amino acid residues which accumulates in cytosol during apoptosis [FEBS Lett. 467 (2000) 150]. It was suggested that positively charged cytochrome c and negatively charged truncated prothymosin alpha (tPT), when meeting in cytosol, can interact with each other. In this paper, such an interaction is shown. (1) Formation of cytochrome cz.ccirf;tPT complex is demonstrated by a blot-overlay assay. (2) Analytical centrifugation of solution containing cytochrome c and tPT reveals formation of complexes of molecular masses higher than those of these proteins. The masses increase when the cytochrome c/tPT ratio increases. High concentration of KCl prevents the complex formation. (3) In the complexes formed, cytochrome c becomes autoxidizable; its reduction by superoxide or ascorbate as well as its operation as electron carrier between the outer and inner mitochondrial membranes appear to be inhibited. (4) tPT inhibits cytochrome c oxidation by H(2)O(2), catalyzed by peroxidase. Thus, tPT abolishes all antioxidant functions of cytochrome c which, in the presence of tPT, becomes in fact a pro-oxidant. A possible role of tPT in the development of reactive oxygen species- and cytochrome c-mediated apoptosis is discussed.  相似文献   
4.
A proliferation-related human protein prothymosin alpha displays exclusively nuclear localization when produced in human and Saccharomyces cerevisiae cells, whereas its isolated bipartite NLS confers nuclear targeting of the GFP reporter in human but not in yeast cells. To test whether this observation is indicative of the existence of specific requirements for nuclear targeting of proteins in yeast, a set of prothymosin alpha deletion mutants was constructed. Subcellular localization of these mutants fused to GFP was determined in yeast and compared with their ability to bind yeast importin alpha (Srp1p) in vitro. The NLS of prothymosin alpha turned out to be both necessary and sufficient to provide protein recognition by importin alpha. However, the NLS-importin alpha interaction did not ensure nuclear targeting of prothymosin alpha derivatives. This defect could be complemented by adding distinct prothymosin alpha sequences to the NLS-containing import substrate, possibly by providing binding site(s) for additional components of the yeast nuclear import machinery.  相似文献   
5.
Caspases are cysteine‐dependent proteases and are important components of animal apoptosis. They introduce specific breaks after aspartate residues in a number of cellular proteins mediating programmed cell death (PCD). Plants encode only distant homologues of caspases, the metacaspases that are involved in PCD, but do not possess caspase‐specific proteolytic activity. Nevertheless, plants do display caspase‐like activities indicating that enzymes structurally distinct from classical caspases may operate as caspase‐like proteases. Here, we report the identification and characterisation of a novel PCD‐related subtilisin‐like protease from tobacco and rice named phytaspase (plant aspartate‐specific protease) that possesses caspase specificity distinct from that of other known caspase‐like proteases. We provide evidence that phytaspase is synthesised as a proenzyme, which is autocatalytically processed to generate the mature enzyme. Overexpression and silencing of the phytaspase gene showed that phytaspase is essential for PCD‐related responses to tobacco mosaic virus and abiotic stresses. Phytaspase is constitutively secreted into the apoplast before PCD, but unexpectedly is re‐imported into the cell during PCD providing insights into how phytaspase operates.  相似文献   
6.
This paper is dedicated to the 35 year jubilee of the founding and the activity of the International Society for Plant Anaerobiosis (ISPA). The role of ISPA members in opening new avenues of research is emphasized. Major developments in the study of plant hypoxic and anoxic stress achieved during subsequent decades are considered. Special attention is given to plant adaptation and damage under conditions of oxygen deficiency and complete absence of oxygen as well as during the post-anaerobic period. Plant metabolic adaptation to anaerobic stress and the capacity of some plants to avoid anaerobiosis are discussed.  相似文献   
7.
Several novel functions of the well-known and intensively studied protein prothymosin alpha have recently been revealed. In addition to such traditional functions of this protein as immunomodulatory activity and stimulation of cellular proliferation, prothymosin alpha was shown to be involved in protection of cells against apoptosis and in regulation of expression of the oxidative stress-protective genes. Methods and approaches used for revelation of prothymosin alpha novel functions are described in this review.  相似文献   
8.
Electron-microscopic examination of mitochondrial membrane ultrastructure in detached leaves of four-day-old wheat (Triticum aestivum L.) seedlings incubated under conditions of strict anoxia in the presence of exogenous glucose and cycloheximide or in the absence of these compounds revealed a paradoxical phenomenon: in the absence of exogenous glucose and cycloheximide, even a short-term (15–30 min) anaerobiosis resulted in a pathological destruction of mitochondria (swelling and the loss of cristae); however, a longer uninterrupted anaerobiosis (3–4 h) did not induce further mitochondria degradation but, in contrast, resulted in the recovery of their initial ultrastructure. Irreversible mitochondria degradation was observed only during subsequent still longer leaf anaerobic treatment (24–48 h). When, under conditions of strict anoxia, leaves were fed with glucose to stimulate glycolysis and ethanolic fermentation, we did not observe any signs of early destruction of mitochondrial ultrastructure and their swelling. Blockage of anaerobic protein synthesis with cycloheximide resulted in early destruction and subsequent irreversible degradation of mitochondria without any indications of their structural recovery. Based on the results of the experiments, we concluded that cell energy metabolism controlled byboth the presence of utilizable carbohydrates and also by the induction of anaerobic protein synthesis played a key role during early mitochondria destruction under extreme conditions of anaerobic stress, their subsequent recovery, and irreversible degradation during continuous long-term strict anoxia.  相似文献   
9.
Proteases with an aspartate cleavage specificity are known to contribute to programmed cell death (PCD) in animals and plants. In animal cells this proteolytic activity belongs to caspases, a well-characterized family of cysteine-dependent death proteases. Plants, however, lack caspase homologs and thus the origin of this type of proteolytic activity in planta was poorly understood. Here, we review recent data demonstrating that a plant serine-dependent protease, phytaspase, shares cleavage specificity and a role in PCD analogous to that of caspases. However, unlike caspases, regulation of phytaspase-mediated cleavage of intracellular target proteins appears to be attained not at the level of proenzyme processing/activation, which occurs, in the case of phytaspase, autocatalytically and constitutively. Rather, the mature phytaspase is excluded from healthy cells into the apoplast and is allowed to re-enter cells upon the induction of PCD. Thus, PCD-related proteases in animals and plants display both common features and important distinctions.  相似文献   
10.
This review attempted to follow the establishment of a novel branch of biology arisen at the interfaces between plant physiology, biochemistry, and molecular biology—plant anaerobic stress. Most attention was given to the early period of these investigations, the activity of the members of International Society for Plant Anaerobiosis in particular, and the contribution of Russian scientists, who played a significant role at that time in the establishment and international recognition of this new trend. In this connection, the following points are considered: (1) Crawford's metabolic theory, which could not withstand experimental verification but induced an active discussion, thus stimulating further investigations in this field; (2) a concept of two main strategies of plant adaptation to anaerobic stress (true and apparent adaptation), which was put forward based on the following experimental data: (a) a discovery of a paradoxical phenomenon of hyper-sensitivity, but not hyper-resistance to anoxia, of the flood-tolerant plant roots (“apparent” tolerance); (b) the elucidation of the physiological role of oxygen transported from aerated organs of flood-tolerant plants to the roots inhabiting anaerobic environment; (c) demonstration of the key role of both energy metabolism, and (d) substrate providing for glycolysis and ethanolic fermentation in plants manifesting “true” tolerance to oxygen deprivation; (3) the discovery of plant stress proteins; and finally (4) pH-stat theory put forward by Davies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号