首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   34篇
  2023年   5篇
  2022年   12篇
  2021年   21篇
  2020年   10篇
  2019年   14篇
  2018年   5篇
  2017年   6篇
  2016年   14篇
  2015年   23篇
  2014年   31篇
  2013年   20篇
  2012年   29篇
  2011年   25篇
  2010年   20篇
  2009年   21篇
  2008年   18篇
  2007年   19篇
  2006年   14篇
  2005年   13篇
  2004年   11篇
  2003年   16篇
  2002年   10篇
  2001年   10篇
  2000年   11篇
  1999年   8篇
  1998年   10篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   6篇
  1989年   2篇
  1988年   5篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有442条查询结果,搜索用时 15 毫秒
1.
2.
3.
Summary The in-situ development of Aspergillus niger entrapped in polyacrylamide gel from spores and the gel surface characteristics were studied during the repeated shake flask batch citric acid fermentation. A marked increase in the rate of citric acid production was observed with the periodic replacement of culture with fresh media at an interval of 6 days reducing the fermentation time nearly to half. The metabolically active A. niger cells for citric acid production were characterized by the appearance of thick and bulbous hyphae scattered in and on the gel surface.  相似文献   
4.
We describe here three different hamster cell mutants which are resistant to diphtheria toxin and which provide models for investigating some of the functions required by the toxin inactivates elongation factor 2 (EF-2). Cell-free extracts from mutants Dtx(r)-3 was codominant. The evidence suggests that the codominant phenotype is the result of a mutation in a gene coding for EF-2. The recessive phenotype might arise by alteration of an enzyme which modifies the structure of EF-2 so that it becomes a substrate for reaction with the toxin. Another mutant, Dtx(r)-2, contained EF-2 that was sensitive to the toxin and this phenotype was recessive. Pseudomonas aeruginosa exotoxin is known to inactivate EF-2 as does diphtheria toxin and we tested the mutants for cross-resistance to pseudomonas exotoxin. Dtx(r)-1 and Dtx(r)-3 were cross-resistant while Dtx(r)-2 was not. It is known that diphtheria toxin does not penetrate to the cytoplasm of mouse cells and that these cell have a naturally occurring phenotype of diphtheria toxin resistance. We fused each of the mutants with mouse 3T3 cells and measured the resistance. We fused each of the mutants with mouse 3T3 cells and measured the resistance of the hybrid cells to diphtheria toxin. Intraspecies hybrids containing the genome of mutants Dtx(r)-1 and Dtx(r)-3 had some resistance while those formed with Dtx(r)-2 were as sensitive as hybrids derived from fusions between wild-type hamster cells and mouse 3T3 cells.  相似文献   
5.
Mutants of initiator tRNA that function both as initiators and elongators   总被引:13,自引:0,他引:13  
We describe the effect of mutations in the acceptor stem of Escherichia coli initiator tRNA on its function in vivo. The acceptor stem mutations were coupled to mutations in the anticodon sequence from CAU----CUA to allow functional studies on the mutant tRNAs in initiation and in elongation in vivo. We show that, with one exception, there is a good correlation between the kinetic parameters for formylation of the mutant tRNAs in vitro (preceding paper, Lee, C.P., Seong, B. L., and RajBhandary, U.L. (1991) J. Biol. Chem. 266, 18012-18017) and their activity in initiation in vivo. These results suggest an important role for formylation of initiator tRNA in its function in initiation, at least when it is aminoacylated with glutamine as is the case with the mutant tRNAs used here. Mutant tRNAs that have a base pair between nucleotides 1 and 72 at the top of the acceptor stem function as elongators, as analyzed by their ability to suppress an amber mutation in the E. coli beta-galactosidase gene. One of these mutants is also quite active in initiation. Thus, activities of a tRNA in initiation and elongation steps of protein synthesis are not mutually exclusive. Using a mRNA with two in frame UAG codons, we show that this mutant tRNA can both initiate protein synthesis from the upstream UAG and suppress the down-stream UAG. We discuss the potential use of tRNAs with such "dual" functions in tightly regulated expression of genes for proteins in E. coli.  相似文献   
6.
We showed recently that a mutant of Escherichia coli initiator tRNA with a CAU-->CUA anticodon sequence change can initiate protein synthesis from UAG by using formylglutamine instead of formylmethionine. We further showed that coupling of the anticodon sequence change to mutations in the acceptor stem that reduced Vmax/Km(app) in formylation of the tRNAs in vitro significantly reduced their activity in initiation in vivo. In this work, we have screened an E. coli genomic DNA library in a multicopy vector carrying one of the mutant tRNA genes and have found that the gene for E. coli methionyl-tRNA synthetase (MetRS) rescues, partially, the initiation defect of the mutant tRNA. For other mutant tRNAs, we have examined the effect of overproduction of MetRS on their activities in initiation and their aminoacylation and formylation in vivo. Some but not all of the tRNA mutants can be rescued. Those that cannot be rescued are extremely poor substrates for MetRS or the formylating enzyme. Overproduction of MetRS also significantly increases the initiation activity of a tRNA mutant which can otherwise be aminoacylated with glutamine and fully formylated in vivo. We interpret these results as follows. (i) Mutant initiator tRNAs that are poor substrates for MetRS are aminoacylated in part with methionine when MetRS is overproduced. (ii) Mutant tRNAs aminoacylated with methionine are better substrates for the formylating enzyme in vivo than mutant tRNAs aminoacylated with glutamine. (iii) Mutant tRNAs carrying formylmethionine are significantly more active in initiation than those carrying formylglutamine. Consequently, a subset of mutant tRNAs which are defective in formylation and therefore inactive in initiation when they are aminoacylated with glutamine become partially active when MetRS is overproduced.  相似文献   
7.
8.
Chronic topical cases of Sporotrichosis, a chronic fungal infection caused by the ubiquitously present cryptic members of the Sporothrix species complex, are treated with oral administrations of itraconazole. However, severe pulmonary or disseminated cases require repeated intra-venous doses of amphotericin B or even surgical debridement of the infected tissue. The unavoidable adverse side-effects of the current treatments, besides the growing drug resistance among Sporothrix genus, demands exploration of alternative therapeutic options. Medicinal herbs, due to their multi-targeting capacity, are gaining popularity amidst the rising antimicrobial recalcitrance. Withania somnifera is a well-known medicinal herb with reported antifungal activities against several pathogenic fungal genera. In this study, the antifungal effect of the whole plant extract of W. somnifera (WSWE) has been explored for the first time, against an itraconazole resistant strain of S. globosa. WSWE treatment inhibited S. globosa yeast form growth in a dose-dependent manner, with IC50 of 1.40 mg/ml. Minimum fungicidal concentration (MFC) was found to be 50 mg/ml. Sorbitol protection and ergosterol binding assays, revealed that anti-sporotrichotic effects of WSWE correlated well with the destabilization of the fungal cell wall and cell membrane. This observation was validated through dose-dependent decrease in overall ergosterol contents in WSWE-treated S. globosa cells. Compositional analysis of WSWE through high performance liquid chromatography (HPLC) exhibited the presence of several anti-microbial phytochemicals like withanone, withaferin A, withanolides A and B, and withanoside IV and V. Withanone and withaferin A, purified from WSWE, were 10–20 folds more potent against S. globosa than WSWE, thus, suggesting to be the major phytocompounds responsible for the observed anti-sporotrichotic activity. In conclusion, this study has demonstrated the anti-sporotrichotic property of the whole plant extract of W. somnifera against S. globosa that could be further explored for the development of a natural antifungal agent against chronic Sporotrichosis.  相似文献   
9.
To identify genomic segments associated with days to flowering (DF) and leaf shape in pigeonpea, QTL-seq approach has been used in the present study. Genome-wide SNP profiling of extreme phenotypic bulks was conducted for both the traits from the segregating population (F2) derived from the cross combination- ICP 5529 × ICP 11605. A total of 126.63 million paired-end (PE) whole-genome resequencing data were generated for five samples, including one parent ICP 5529 (obcordate leaf and late-flowering plant), early and late flowering pools (EF and LF) and obcordate and lanceolate leaf shape pools (OLF and LLS). The QTL-seq identified two significant genomic regions, one on CcLG03 (1.58 Mb region spanned from 19.22 to 20.80 Mb interval) for days to flowering (LF and EF pools) and another on CcLG08 (2.19 Mb region spanned from 6.69 to 8.88 Mb interval) for OLF and LLF pools, respectively. Analysis of genomic regions associated SNPs with days to flowering and leaf shape revealed 5 genic SNPs present in the unique regions. The identified genomic regions for days to flowering were also validated with the genotyping-by-sequencing based classical QTL mapping method. A comparative analysis of the identified seven genes associated with days to flowering on 12 Fabaceae genomes, showed synteny with 9 genomes. A total of 153 genes were identified through the synteny analysis ranging from 13 to 36. This study demonstrates the usefulness of QTL-seq approach in precise identification of candidate gene(s) for days to flowering and leaf shape which can be deployed for pigeonpea improvement.Subject terms: Genetic association study, Plant hybridization

QTL-seq approach was utilized for mapping of genomic regions/genes associated with days to flowering and leaf shape in pigeonpea. Analysis of genomic regions and associated SNPs with days to flowering and leaf shape revealed 1 and 4 non-synonymous SNPs, respectively. The study demonstrated sequencing-based trait mapping approach can accelerate trait mapping of the targeted traits.  相似文献   
10.
Agriculture is now facing the ‘perfect storm’ of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic‐assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号