首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2014年   1篇
  2012年   1篇
  2006年   1篇
  2004年   1篇
  1999年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
1.
2.

Background

Impaired intestinal barrier function, low-grade inflammation and altered neuronal control are reported in functional gastrointestinal disorders. However, the sequence of and causal relation between these events is unclear, necessitating a spontaneous animal model. The aim of this study was to describe the natural history of intestinal permeability, mucosal and neuromuscular inflammation and nitrergic motor neuron function during the lifetime of the BioBreeding (BB) rat.

Methods

Normoglycemic BB-diabetes prone (DP) and control rats were sacrificed at different ages and jejunum was harvested to characterize intestinal permeability, inflammation and neuromuscular function.

Results

Both structural and functional evidence of increased intestinal permeability was found in young BB-DP rats from the age of 50 days. In older animals, starting in the mucosa from 70 days and in half of the animals also in the muscularis propria from 110 days, an inflammatory reaction, characterized by an influx of polymorphonuclear cells and higher myeloperoxidase activity, was observed. Finally, in animals older than 110 days, coinciding with a myenteric ganglionitis, a loss of nitrergic neurons and motor function was demonstrated.

Conclusion

In the BB-rat, mucosal inflammatory cell infiltration is preceded by intestinal barrier dysfunction and followed by myenteric ganglionitis and loss of nitrergic function. This sequence supports a primary role for impaired barrier function and provides an insightful model for the pathogenesis of functional gastrointestinal disorders.  相似文献   
3.
In rat small mesenteric arteries, the influence of modulation of basal smooth muscle K+ efflux on the mechanism of endothelium-dependent hyperpolarization was investigated. The membrane potentials of the vascular smooth muscle cells were measured using conventional microelectrode techniques. Incubation of resting arteries with the gap junction uncoupler carbenoxolone (20 micro M) decreased the endothelium-dependent hyperpolarization elicited by a submaximal concentration of acetylcholine (3 micro M) to about 65% of the control. In the presence of Ba2+ (200 micro M), which depolarized the membrane potential by 10 mV, the acetylcholine-induced membrane potential response was doubled in magnitude, reaching values not different from control. Moreover, the hyperpolarization was more resistant to carbenoxolone in these conditions. Finally, both in the absence and in the presence of carbenoxolone, the combined application of Ba2+ and ouabain (0.5 mM) did not abolish the acetylcholine response. These results suggest that gap junctional coupling plays a role in endothelium-dependent hyperpolarization of smooth muscle cells of resting rat small mesenteric arteries. Additionally, these findings show that the hyperpolarization does not rely on activation of inward rectifying K+ channels. Although a minor contribution of Na-K pumping cannot be excluded, the Ba2+ experiments show that the membrane electrical response is mediated by activation of a Ba2+-resistant K+ conductance.  相似文献   
4.
In the present study, the relaxant effect of the cannabinoid methanandamide was explored in rat gastric arteries. Since in some vessels cannabinoids have been shown to release calcitonin gene-related peptide (CGRP) from perivascular nerves, the influence of methanandamide was compared with that of exogenous CGRP. Methanandamide and CGRP elicited concentration-dependent, endothelium-independent relaxations. Methanandamide-induced relaxations were unaffected by the CB1 receptor antagonist AM251, the CB2 receptor antagonists AM630 and SR144528, and combined pre-exposure to AM251 and SR144528. Pre-exposure to O-1918, an antagonist of a novel nonCB1/nonCB2 cannabinoid receptor, did not influence the relaxations to methanandamide. Capsaicin or capsazepine treatment slightly inhibited methanandamide-induced relaxations. Preincubation with 30 mmol/L extracellular K+ or 3 mmol/L TEA had no significant effect on the responses elicited by methanandamide, but reduced CGRP-induced relaxations. Relaxation to 10(-5) mol/L methanandamide was significantly blunted by Bay K8644 and by preincubation with nifedipine. Furthermore, 10(-5) mol/L methanandamide significantly inhibited CaCl2-induced contractions in norepinephrine-stimulated vessels previously depleted of intra- and extracellular Ca2+. Finally, preincubation with 10(-5) mol/L methanandamide almost completely abolished high K+-induced contractions. These findings suggest that the vasorelaxant action of methanandamide in rat gastric arteries is not mediated by stimulation of known cannabinoid receptors and only partly related to stimulation of TRPV1 receptors on perivascular nerves. At high concentrations, methanandamide might induce relaxation by reducing calcium entry into the smooth muscle cells.  相似文献   
5.
6.
7.
8.
A more detailed insight into disease mechanisms of multiple sclerosis (MS) is crucial for the development of new and more effective therapies. MS is a chronic inflammatory autoimmune disease of the central nervous system. The aim of this study is to identify novel disease associated proteins involved in the development of inflammatory brain lesions, to help unravel underlying disease processes. Brainstem proteins were obtained from rats with MBP induced acute experimental autoimmune encephalomyelitis (EAE), a well characterized disease model of MS. Samples were collected at different time points: just before onset of symptoms, at the top of the disease and following recovery. To analyze changes in the brainstem proteome during the disease course, a quantitative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE) followed by mass spectrometry. We identified 75 unique proteins in 92 spots with a significant abundance difference between the experimental groups. To find disease-related networks, these regulated proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA). The analysis revealed that 70% of these proteins have been described to take part in neurological disease. Furthermore, some focus networks were created by IPA. These networks suggest an integrated regulation of the identified proteins with the addition of some putative regulators. Post-synaptic density protein 95 (DLG4), a key player in neuronal signalling and calcium-activated potassium channel alpha 1 (KCNMA1), involved in neurotransmitter release, are 2 putative regulators connecting 64% of the identified proteins. Functional blocking of the KCNMA1 in macrophages was able to alter myelin phagocytosis, a disease mechanism highly involved in EAE and MS pathology. Quantitative analysis of differentially expressed brainstem proteins in an animal model of MS is a first step to identify disease-associated proteins and networks that warrant further research to study their actual contribution to disease pathology.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号