首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1607篇
  免费   131篇
  2016年   16篇
  2015年   25篇
  2014年   34篇
  2013年   41篇
  2012年   39篇
  2011年   57篇
  2010年   66篇
  2009年   47篇
  2008年   60篇
  2007年   84篇
  2006年   46篇
  2005年   58篇
  2004年   40篇
  2003年   44篇
  2002年   33篇
  2001年   34篇
  2000年   27篇
  1999年   36篇
  1998年   16篇
  1997年   25篇
  1996年   26篇
  1995年   18篇
  1994年   23篇
  1993年   24篇
  1992年   24篇
  1991年   36篇
  1990年   36篇
  1989年   31篇
  1988年   19篇
  1987年   30篇
  1986年   22篇
  1985年   21篇
  1984年   22篇
  1982年   19篇
  1981年   18篇
  1980年   17篇
  1979年   16篇
  1978年   17篇
  1976年   19篇
  1974年   19篇
  1973年   27篇
  1972年   23篇
  1965年   36篇
  1964年   19篇
  1963年   32篇
  1962年   23篇
  1961年   33篇
  1960年   21篇
  1959年   28篇
  1958年   28篇
排序方式: 共有1738条查询结果,搜索用时 31 毫秒
1.
Abstract

Microorganisms capable of aerobic respiration on ferrous ions are spread throughout eubacterial and archaebacterial phyla. Phylogenetically distinct organisms were shown to express spectrally distinct redox‐active biomolecules during autotrophic growth on soluble iron. A new iron‐oxidizing eubacterium, designated as strain Funis, was investigated. Strain Funis was judged to be different from other known iron‐oxidizing bacteria on the bases of comparative lipid analyses, 16S rRNA sequence analyses, and cytochrome composition studies. When grown autotrophically on ferrous ions, Funis produced conspicuous levels of a novel acid‐stable, acid‐soluble yellow cytochrome with a distinctive absorbance peak at 579 nm in the reduced state.

Stopped‐flow spectrophotometric kinetic studies were conducted on respiratory chain components isolated from cell‐free extracts of Thiobacillus ferrooxidans. Experimental results were consistent with a model where the primary oxidant of ferrous ions is a highly aggregated c‐type cytochrome that then reduces the periplasmic rusticyanin. The Fe(II)‐dependent, cytochrome c‐catalyzed reduction of the rusticyanin possessed three kinetic properties in common with corresponding intact cells that respire on iron: the same anion specificity, a similar dependence of the rate on the concentration of ferrous ions, and similar rates at saturating concentrations of ferrous ions  相似文献   
2.
V S Sriskanda  G Pruss  X Ge    V B Vance 《Journal of virology》1996,70(8):5266-5271
Gel retardation and UV-cross-linking techniques were used to demonstrate that two tobacco proteins, with approximate molecular masses of 28 and 32 kDa, bind to a site within the 3' region of potato virus X (PVX) genomic RNA. The protein binding is specific, in that a 50-fold excess of unlabeled probe prevents formation of the complexes but no reduction is observed with a 2,000-fold molar excess of yeast tRNA. Complex formation is inhibited by poly(U) but is relatively unaffected by poly(A), poly(G), or poly(C-I). PVX RNA-host protein complex formation occurs in vitro at salt concentrations up to 400 mM. Deletion mapping indicates that the proteins bind within the 3' untranslated region (UTR) of PVX genomic RNA and that an 8-nucleotide U-rich sequence (5'-UAUUUUCU) is required for the binding. Deletion of the 8-nucleotide U-rich region from the 3' UTR of a sensitive PVX reporter virus that carries the luciferase gene in place of the PVX coat protein gene results in a more than 70,000-fold reduction in luciferase expression in tobacco protoplasts. RNA probes carrying the sequence GCGC in place of the central four contiguous uridines of the 8-nucleotide U-rich motif fail to bind host protein at detectable levels, and the same mutation, when introduced into the PVX reporter virus, eliminates viral multiplication. Mutations of 1 or 2 nucleotides within the same four uridines reduced both binding of host proteins and replication of reporter virus. These results indicate that the 8-nucleotide U-rich motif within the PVX 3' UTR is important for some aspect of viral multiplication and suggest that host protein binding plays a role in the process.  相似文献   
3.
DNA topoisomerase I (Top1p) catalyzes topological changes in DNA and is the cellular target of the antitumor agent camptothecin (CPT). Non-CPT drugs that target Top1p, such as indolocarbazoles, are under clinical development. However, whether the cytotoxicity of indolocarbazoles derives from Top1p poisoning remains unclear. To further investigate indolocarbazole mechanism, rebeccamycin R-3 activity was examined in vitro and in yeast. Using a series of Top1p mutants, where substitution of residues around the active site tyrosine has well-defined effects on enzyme catalysis, we show that catalytically active, CPT-resistant enzymes remain sensitive to R-3. This indolocarbazole did not inhibit yeast Top1p activity, yet was effective in stabilizing Top1p-DNA complexes. Similar results were obtained with human Top1p, when Ser or His were substituted for Asn-722. The mutations altered enzyme function and sensitivity to CPT, yet R-3 poisoning of Top1p was unaffected. Moreover, top1delta, rad52delta yeast cells expressing human Top1p, but not catalytically inactive Top1Y723Fp, were sensitive to R-3. These data support hTop1p as the cellular target of R-3 and indicate that distinct drug-enzyme interactions at the active site are required for efficient poisoning by R-3 or CPT. Furthermore, resistance to one poison may potentiate cell sensitivity to structurally distinct compounds that also target Top1p.  相似文献   
4.
5.
6.
7.
8.
The specificity of CTP:phosphocholine cytidylyltransferase from rat liver for phosphorylated bases has been investigated. The apparent Km for phosphocholine was 0.17 mM. As the number of methyl substituents on the phospho-base decreased, the apparent Km increased: 4.0 mM for phosphodimethylethanolamine, 6.9 for phosphomonomethylethanolamine and 68.4 for phosphoethanolamine. The Vmax for the reaction was similar for phosphocholine (12.6 mumol/min per mg protein), phosphomonomethylethanolamine (13.5 mumol/min per mg protein) and phosphoethanolamine (9.2 mumol/min per mg protein). When phosphodimethylethanolamine was the substrate, the Vmax was 3-fold higher (40.3 mumol/min per mg protein). Phosphoethanolamine, phosphomonomethylethanolamine and phosphodimethylethanolamine were competitive inhibitors of the cytidylyltransferase when phosphocholine was used as substrate with Ki values of 18.5 mM, 9.3 mM and 1.5 mM, respectively. The results show that the cytidylyltransferase is highly specific for phosphocholine.  相似文献   
9.
The dependence of alfalfa (Medicago sativa L.) root and nodule nonphotosynthetic CO2 fixation on the supply of currently produced photosynthate and nodule nitrogenase activity was examined at various times after phloem-girdling and exposure of nodules to Ar:O2. Phloemgirdling was effected 20 hours and exposure to Ar:O2 was effected 2 to 3 hours before initiation of experiments. Nodule and root CO2 fixation rates of phloem-girdled plants were reduced to 38 and 50%, respectively, of those of control plants. Exposure to Ar:O2 decreased nodule CO2 fixation rates to 45%, respiration rates to 55%, and nitrogenase activities to 51% of those of the controls. The products of nodule CO2 fixation were exported through the xylem to the shoot mainly as amino acids within 30 to 60 minutes after exposure to 14CO2. In contrast to nodules, roots exported very little radioactivity, and most of the 14C was exported as organic acids. The nonphotosynthetic CO2 fixation rate of roots and nodules averaged 26% of the gross respiration rate, i.e. the sum of net respiration and nonphotosynthetic CO2 assimilation. Nodules fixed CO2 at a rate 5.6 times that of roots, but since nodules comprised a small portion of root system mass, roots accounted for 76% of the nodulated root system CO2 fixation. The results of this study showed that exposure of nodules to Ar:O2 reduced nodule-specific respiration and nitrogenase activity by similar amounts, and that phloem-girdling significantly reduced nodule CO2 fixation, nitrogenase activity, nodule-specific respiration, and transport of 14C photoassimilate to nodules. These results indicate that nodule CO2 fixation in alfalfa is associated with N assimilation.  相似文献   
10.
Purification of phosphatidylethanolamine N-methyltransferase from rat liver   总被引:5,自引:0,他引:5  
Phosphatidylethanolamine (PE) N-methyltransferase catalyzes the synthesis of phosphatidylcholine by the stepwise transfer of methyl groups from S-adenosylmethionine to the amino head group of PE. PE N-methyltransferase was solubilized from a microsomal membrane fraction of rat liver using the nonionic detergent Triton X-100 and purified to apparent homogeneity. Specific activities of PE N-methyltransferase with PE, phosphatidyl-N-monomethylethanolamine (PMME), and phosphatidyl-N,N-dimethylethanolamine (PDME) as substrates were 0.63, 8.59, and 3.75 mumol/min/mg protein, respectively. The purified enzyme was composed of a single subunit with a molecular mass of 18.3 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Methylation activities dependent on the presence of PE, PMME, and PDME and the 18.3-kDa protein co-eluted when purified PE N-methyltransferase was subjected to gel filtration on Sephacryl S-300 in the presence of 0.1% Triton X-100. All three methylation activities eluted with a Stokes radius 2.1 A greater than that determined for pure Triton micelles (molecular mass difference of 27.4 kDa). Two-dimensional analysis of PE N-methyltransferase employing nonequilibrium pH gradient gel electrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the enzyme is composed of a single isoform. Analysis of enzyme activity using PE, PMME, and PDME at various Triton X-100 concentrations indicated the enzyme follows the "surface dilution" model proposed for other enzymes that act at the surface of mixed micelle substrates. Initial velocity data for all three lipid substrates (at fixed concentrations of Triton X-100) were highly cooperative in nature. Hill numbers for PMME and PDME ranged from 3 at 0.5 mM Triton to 6 at 2.0 mM Triton. All three methylation activities had a pH optimum of 10. These results provide evidence that a single membrane-bound enzyme catalyzes all three methylation steps for the conversion of PE to phosphatidylcholine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号