首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2009年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2000年   2篇
  1994年   1篇
  1993年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
This study investigated genetic polymorphism on a local scale in Puccinia striiformis f. sp. tritici populations during natural epidemics, in four fields located in northern France and sampled in 1998 or 1999. Two hundred and forty-seven isolates were analyzed for their amplified fragment length polymorphism (AFLP) pattern through four primer combinations, and 194 of them were also tested for their virulence factors. Only one or two pathotypes were found in each field, and all isolates had virulence v17, matching the recently introduced Yr17 resistance gene. Polymorphism on a field scale was low. Although 67 loci were polymorphic, 77% of the isolates had the same AFLP pattern, all other patterns being rare or unique. Analyses of the genetic distance between AFLP patterns based on the Jaccard index allowed us to define 12 groups, but a bootstrap analysis showed that all isolates could be assigned to a single clonal lineage. This leads us to conclude that P. striiformis f. sp. tritici populations are clonal on a field scale in northern France.  相似文献   
2.
3.
We report the characterization of ten microsatellite markers in the fungus Puccinia striiformis f.sp. tritici, responsible for yellow rust disease on wheat. A published EST library was scanned for microsatellite motives, and over 15 selected EST sequences, 13 were successfully amplified and ten exhibited polymorphism over an international collection of 43 isolates. These new microsatellites, added to the few previously published ones, provide a sufficient set of markers to perform population genetic studies.  相似文献   
4.

Background and Aims

Recent developments in plant disease management have led to a growing interest in alternative strategies, such as increasing host diversity and decreasing the use of pesticides. Use of cultivar mixtures is one option, allowing the spread of plant epidemics to be slowed down. As dispersal of fungal foliar pathogens over short distances by rain-splash droplets is a major contibutor to the spread of disease, this study focused on modelling the physical mechanisms involved in dispersal of a non-specialized pathogen within heterogeneous canopies of cultivar mixtures, with the aim of optimizing host diversification at the intra-field level.

Methods

Virtual 3-D wheat-like plants (Triticum aestivum) were used to consider interactions between plant architecture and disease progression in heterogeneous canopies. A combined mechanistic and stochastic model, taking into account splash droplet dispersal and host quantitative resistance within a 3-D heterogeneous canopy, was developed. It consists of four sub-models that describe the spatial patterns of two cultivars within a complex canopy, the pathway of rain-splash droplets within this canopy, the proportion of leaf surface area impacted by dispersal via the droplets and the progression of disease severity after each dispersal event.

Key Results

Different spatial organization, proportions and resistance levels of the cultivars of two-component mixtures were investigated. For the eight spatial patterns tested, the protective effect against disease was found to vary by almost 2-fold, with the greatest effect being obtained with the smallest genotype unit area, i.e. the ground area occupied by an independent unit of the host population that is genetically homogeneous. Increasing both the difference between resistance levels and the proportion of the most resistant cultivar often resulted in a greater protective effect; however, this was not observed for situations in which the most resistant of the two cultivars in the mixture had a relatively low level of resistance.

Conclusions

The results show agreement with previous data obtained using experimental approaches. They demonstrate that in order to maximize the potential mixture efficiency against a splash-dispersed pathogen, optimal susceptible/resistant cultivar proportions (ranging from 1/9 to 5/5) have to be established based on host resistance levels. The results also show that taking into account dispersal processes in explicit 3-D plant canopies can be a key tool for investigating disease progression in heterogeneous canopies such as cultivar mixtures.  相似文献   
5.
Dynamic management has been proposed as a complementary strategy to gene banks for the conservation of genetic resources. The evolution of frequencies of genes for specific resistance towards powdery mildew (caused by Blumeria graminis f. sp. tritici) in populations of a French network for dynamic management of bread wheat genetic resources was investigated after 10 years of multiplication without human selection. The objective was to determine whether specific resistance gene diversity was maintained in the populations and whether any changes could be attributed to selection due to pathogen pressure. Seven populations, originating from four of the network sites, were characterized and compared to the initial population for six specific resistance gene frequencies detected by nine Blumeria graminis f. sp. tritici isolates. Diversity decreased at the population level, but because of a strong differentiation between the populations, this diversity was maintained at the network level. The comparison of Fst parameters estimated on neutral markers (RFLP) and on resistance gene data revealed that in two of the populations specific resistance genes had been selected by pathogen pressure, whereas evolution in two other populations seemed to be the result of genetic drift. For the three last populations, conclusions were less clear, as one had probably experienced a strong bottleneck and the other two presented intermediate Fst values. A dynamic management network with sites contrasted for pathogen pressure, allowing genetic drift in some populations and selection in others, appeared, at least on the short term, to be a good tool for maintaining the diversity of genes for specific resistance to powdery mildew. Received: 15 December 1999 / Accepted: 30 December 1999  相似文献   
6.
The use of a diversity of resistance genes limits the development of polycyclic epidemics caused by airborne pathogens and reduces the risk that resistance be overcome by virulent races. Diversity can be easily achieved by growing mixtures of cultivars with different resistance genes and homogeneous agronomic traits. The mechanisms by which disease is reduced in cultivar mixtures include the loss of inoculum due to the presence of resistant plants between susceptible ones and resistance induced by avirulent pathogens. The complementary effects of individual mixture components reacting to disease pressure and to abiotic stresses result in greater yield stability compared with pure stands. The quality of products from mixtures is at least equal to that obtained with pure stands. This type of resistance management is applicable to both annual and perennial crops.  相似文献   
7.

Background  

Costs of adaptation play an important role in host-parasite coevolution. For parasites, evolving the ability to circumvent host resistance may trade off with subsequent growth or transmission. Such costs of virulence (sensu plant pathology) limit the spread of all-infectious genotypes and thus facilitate the maintenance of genetic polymorphism in both host and parasite. We investigated costs of three virulence factors in Puccinia striiformis f.sp. tritici, a fungal pathogen of wheat (Triticum aestivum).  相似文献   
8.
Quantitative resistance is postulated to be more durable than qualitative (R-gene mediated) resistance, which is usually quickly overcome by the pathogen population. Despite its wide use for nearly 10?years in France, the French bread wheat cultivar Apache remains resistant to stripe rust. Here, we investigated the genetic architecture of cv. Apache resistance to examine whether its durability could be explained by quantitative characteristics. We identified quantitative trait loci (QTL) by composite interval mapping of disease progress data recorded throughout 4?years of field assays. These assays included inoculation with three different pathotypes on a segregating population originating from a cross between cv. Apache and cv. Taldor, a French cultivar susceptible to stripe rust. Three QTLs derived from Apache, QYr.inra-2AS, QYr.inra-2BL and QYr.inra-4B, were detected. Each of these QTLs contributed between approximately 15 and 69?% of the phenotypic variance and corresponds to a race-specific resistance gene. We showed that QYr.inra-2AS and QYr.inra-2BS map to the positions of Yr17 and Yr7, respectively, whereas QYr.inra-4B corresponds to an adult plant resistance gene. Our results demonstrate that a combination of two or more race-specific resistance genes can confer durable resistance provided that it is properly managed at a continental level. Race-specific resistance genes should not be removed from breeding programs provided that they are properly managed.  相似文献   
9.
Controlled-environment experiments and computerized simulations on wheat yellow rust and wheat brown rust epidemics indicated that mixtures of resistant and susceptible hosts controlled parasites with small lesions more effectively than parasites with large lesions. Experiments were conducted on seedlings, during two parasitic cycles. Yellow rust lesions were about 200 times larger than those of brown rust. The measured efficacy of seedling mixtures in reducing disease spread was 22 % for yellow rust and 46 % for brown rust. Computerized simulations suggested that, for a given quantity of inoculum, mixture efficacy was limited for a large-lesion parasite because of fast host-plant saturation.  相似文献   
10.
Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of South African populations. Although most geographic populations are not markedly affected by recent dispersal events, this study emphasizes the influence of human activities on recent long-distance spread of the pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号