首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   5篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   14篇
  2012年   17篇
  2011年   22篇
  2010年   10篇
  2009年   9篇
  2008年   10篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   12篇
  2003年   6篇
  2002年   2篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
  1991年   2篇
  1972年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
1.
Abstract

Acid catalysed transformations of (6S)-6,5′-anhydro-6-hydroxy-1-(2′,3′-O-isopropylidene-β-D-ribofuranosyl)hexahydropyrimidine-2-thione are studied. (6R)-6,2′-anhydro-6-hydroxy-1-(α-D-ribofuranosyl)hexahydropyrimidine-2-thione was formed as a thermodynamically stable product. Two intermediates, (6S)-6,5′-anhydro-6-hydroxy-1-(β-D-ribofuranosyl)hexahydropyrimidine-2-thione and 6-hydroxy-1-(D-ribosyl)hexahydropyrimidine-2-thione and products of cleavage of glycosidic bond were identified in the reaction mixtures. Results of X-ray structural determination of the synthesised nucleosides are presented.  相似文献   
2.
International Journal of Peptide Research and Therapeutics - This study presents a simple approach in design of tripeptides as a competitive inhibitor for 3-hydroxy-3-methylglutaryl CoA reductase...  相似文献   
3.
Life-threatening intestinal and systemic effects of the Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) require toxin uptake and transcytosis across intestinal epithelial cells. We have recently demonstrated that EHEC infection of intestinal epithelial cells stimulates toxin macropinocytosis, an actin-dependent endocytic pathway. Host actin rearrangement necessary for EHEC attachment to enterocytes is mediated by the type 3 secretion system which functions as a molecular syringe to translocate bacterial effector proteins directly into host cells. Actin-dependent EHEC attachment also requires the outer membrane protein intimin, a major EHEC adhesin. Here, we investigate the role of type 3 secretion in actin turnover occurring during toxin macropinocytosis. Toxin macropinocytosis is independent of EHEC type 3 secretion and intimin attachment. EHEC soluble factors are sufficient to stimulate macropinocytosis and deliver toxin into enterocytes in vitro and in vivo; intact bacteria are not required. Intimin-negative enteroaggregative Escherichia coli (EAEC) O104:H4 robustly stimulate Shiga toxin macropinocytosis into intestinal epithelial cells. The apical macropinosomes formed in intestinal epithelial cells move through the cells and release their cargo at these cells’ basolateral sides. Further analysis of EHEC secreted proteins shows that a serine protease EspP alone is able to stimulate host actin remodeling and toxin macropinocytosis. The observation that soluble factors, possibly serine proteases including EspP, from each of two genetically distinct toxin-producing strains, can stimulate Shiga toxin macropinocytosis and transcellular transcytosis alters current ideas concerning mechanisms whereby Shiga toxin interacts with human enterocytes. Mechanisms important for this macropinocytic pathway could suggest new potential therapeutic targets for Shiga toxin-induced disease.  相似文献   
4.
We previously reported that fragments of exogenous double-stranded DNA can be internalized by mouse bone marrow cells without any transfection. Our present analysis shows that only 2% of bone marrow cells take up the fragments of extracellular exogenous DNA. Of these, ~ 45% of the cells correspond to CD34 + hematopoietic stem cells. Taking into account that CD34 + stem cells constituted 2.5% of the total cell population in the bone marrow samples analyzed, these data indicate that as much as 40% of CD34 + cells readily internalize fragments of extracellular exogenous DNA. This suggests that internalization of fragmented dsDNA is a general feature of poorly differentiated cells, in particular CD34 + bone marrow cells.  相似文献   
5.
Prion protein (PrPC) is a cell surface glycoprotein that is abundantly expressed in nervous system. The elucidation of the PrPC interactome network and its significance on neural physiology is crucial to understanding neurodegenerative events associated with prion and Alzheimer's diseases. PrPC co‐opts stress inducible protein 1/alpha7 nicotinic acetylcholine receptor (STI1/α7nAChR) or laminin/Type I metabotropic glutamate receptors (mGluR1/5) to modulate hippocampal neuronal survival and differentiation. However, potential cross‐talk between these protein complexes and their role in peripheral neurons has never been addressed. To explore this issue, we investigated PrPC‐mediated axonogenesis in peripheral neurons in response to STI1 and laminin‐γ1 chain‐derived peptide (Ln‐γ1). STI1 and Ln‐γ1 promoted robust axonogenesis in wild‐type neurons, whereas no effect was observed in neurons from PrPC‐null mice. PrPC binding to Ln‐γ1 or STI1 led to an increase in intracellular Ca2+ levels via distinct mechanisms: STI1 promoted extracellular Ca2+ influx, and Ln‐γ1 released calcium from intracellular stores. Both effects depend on phospholipase C activation, which is modulated by mGluR1/5 for Ln‐γ1, but depends on, C‐type transient receptor potential (TRPC) channels rather than α7nAChR for STI1. Treatment of neurons with suboptimal concentrations of both ligands led to synergistic actions on PrPC‐mediated calcium response and axonogenesis. This effect was likely mediated by simultaneous binding of the two ligands to PrPC. These results suggest a role for PrPC as an organizer of diverse multiprotein complexes, triggering specific signaling pathways and promoting axonogenesis in the peripheral nervous system.  相似文献   
6.
The rise in antibiotic resistance has led to an increased research focus on discovery of new antibacterial candidates. While broad-spectrum antibiotics are widely pursued, there is evidence that resistance arises in part from the wide spread use of these antibiotics. Our group has developed a system to produce protein affinity agents, called synbodies, which have high affinity and specificity for their target. In this report, we describe the adaptation of this system to produce new antibacterial candidates towards a target bacterium. The system functions by screening target bacteria against an array of 10,000 random sequence peptides and, using a combination of membrane labeling and intracellular dyes, we identified peptides with target specific binding or killing functions. Binding and lytic peptides were identified in this manner and in vitro tests confirmed the activity of the lead peptides. A peptide with antibacterial activity was linked to a peptide specifically binding Staphylococcus aureus to create a synbody with increased antibacterial activity. Subsequent tests showed that this peptide could block S. aureus induced killing of HEK293 cells in a co-culture experiment. These results demonstrate the feasibility of using the synbody system to discover new antibacterial candidate agents.  相似文献   
7.
The aim of this study was to investigate the role of adiponectin (APN) in a mouse model of laser induced choroidal neovascularization (CNV). We have shown by immunohistochemistry that the expression of APN, adiponectin receptor 1, adiponectin receptor 2 and T cadherin gradually increased from day 1 to day 7 post-laser in laser treated mice compared to controls. Recombinant APN (rAPN) was injected intraperitoneally (i.p., 25 microg/mouse) or intravitreally (2 microg/eye) in lasered mice. Another set of lasered mice received APN peptide via i.p. (75 microg/mouse) or intravitreal (30 microg/eye) route. Control mice received a similar treatment with PBS, control protein or control peptide after laser treatment. We found that in the i.p. and intravitreal injection of rAPN resulted in 78% and 68% inhibition respectively in the size of CNV complex compared to control mice. Similar results were observed when APN peptide was injected intravitreally or i.p. Treatment with rAPN or the peptide resulted in decreased levels of vascular endothelial growth factor. Thus, APN inhibited choroidal angiogenesis and may have therapeutic implications in the treatment of wet age related macular degeneration.  相似文献   
8.
The new axially substituted phthalocyanine (pc) complex of zirconium(IV) with citric acid is reported. It has been shown that the replacement of two Cl-atoms with two citric acid fragments takes place as the result of the reaction between [ZrCl2(pc)] and citric acid. The complex [Zr(citrate)2(pc)] was formed. The spectroscopic properties of the synthesized compound in DMSO, RPMI 1640 medium with and without fetal calf serum (FCS), H2O, and buffer (Tris) solutions have been described. Antitumor activity of this compound has been studied. The cytostatic activity was observed in the concentration range of 6.1-9.0x10(9) molecules [Zr(citrate)2(pc)]/cell and occurred in 4-6 h after treatment with [Zr(citrate)2(pc)] solution.  相似文献   
9.
CoA synthase mediates the last two steps in the sequence of enzymatic reactions, leading to CoA biosynthesis. We have recently identified cDNA for CoA synthase and demonstrated that it encodes a bifunctional enzyme possessing 4'-phosphopantetheine adenylyltransferase and dephospho-CoA kinase activities. Molecular cloning of CoA synthase provided us with necessary tools to study subcellular localization and the regulation of this bifunctional enzyme. Transient expression studies and confocal microscopy allowed us to demonstrate that full-length CoA synthase is associated with the mitochondria, whereas the removal of the N-terminal region relocates the enzyme to the cytosol. In addition, we showed that the N-terminal sequence of CoA synthase (amino acids 1-29) exhibits a hydrophobic profile and targets green fluorescent protein exclusively to mitochondria. Further analysis, involving subcellular fractionation and limited proteolysis, indicated that CoA synthase is localized on the mitochondrial outer membrane. Moreover, we demonstrate for the first time that phosphatidylcholine and phosphatidylethanolamine, which are the main components of the mitochondrial outer membrane, are potent activators of both enzymatic activities of CoA synthase in vitro. Taken together, these data provide the evidence that the final stages of CoA biosynthesis take place on mitochondria and the activity of CoA synthase is regulated by phospholipids.  相似文献   
10.
Medullary breast carcinoma (MBC) is a relatively rare malignancy with heavy lymphocytic infiltration that despite cytologically anaplastic features and high mitotic index has more favorable prognosis than other types of breast cancer. Lymphocytic infiltration of tumors reflects ongoing immune response against tumor antigens which could represent a great interest as potential targets for cancer immunotherapy. The search for MBC antigens by SEREX methodology has not been successful due to a very high titer of false positive clones, representing immunoglobulin genes. Here, we describe a novel approach for generating cDNA expression libraries from MBC tumor samples which are depleted of IgG cDNA clones and, therefore, are suitable for the identification of novel tumor-associated antigens (TAA) by SEREX approach. Modified methodology allowed us to isolate a panel of known and novel TAA which are currently under further investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号