首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   21篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2019年   4篇
  2018年   8篇
  2017年   2篇
  2016年   6篇
  2015年   14篇
  2014年   20篇
  2013年   17篇
  2012年   17篇
  2011年   22篇
  2010年   17篇
  2009年   9篇
  2008年   17篇
  2007年   15篇
  2006年   11篇
  2005年   21篇
  2004年   15篇
  2003年   5篇
  2002年   10篇
  2001年   11篇
  2000年   9篇
  1999年   7篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1994年   4篇
  1993年   7篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   8篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1963年   1篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
1.
2.
An NAD(P)H dehydrogenase stimulated by quinone (P Pupillo, V Valenti, L de Luca, R Hertel 1986 Plant Physiol 80: 384-389) was solubilized from washed microsomes of zucchini squash hypocotyls (Cucurbita pepo L.) by use of 1% Triton X-100. The solubilized enzyme remained in solution in aqueous buffer and could be purified by a combination of Sepharose 6B chromatography and Blue Ultrogel chromatography. Of the three peaks of activity eluted from the latter column with a salt gradient, peak 3 had 50% or more of the activity and was almost pure enzyme. The preparation examined in SDS-gel electrophoresis consisted of two types of subunits, a (molecular weight 39,500) and b (37,000) in equal amounts. Peak 2 was less pure but had a similar polypeptide pattern. The active protein is proposed to be a heterotetramer (a2b2) having a molecular weight of about 150,000, as found by gel exclusion chromatography. The purified enzyme can reduce several quinones, DCPIP, cytochrome c, and with best efficiency ferricyanide, and is therefore a diaphorase. The kinetics for the substrates are negatively cooperative with Hill coefficients nH = 0.55 ± 0.05 for NADPH and 0.22 ± 0.04 for duroquinone. A weak inhibition by p-hydroxymercuric benzoate and mersalyl (stronger with microsomal preparations) suggests the presence of essential sulfhydryl group(s). The possibility is discussed that the dehydrogenase is an NAD(P)H-P450 reductase or similar flavoprotein, and that it is responsible for the NADPH-cytochrome c reductase activity of plant microsomes.  相似文献   
3.
4.
Stomatal conductances of normally oriented and inverted leaves were measured as light levels (photosynthetic photon flux densities) were increased to determine whether abaxial stomata of Vicia faba leaves were more sensitive to light than adaxial stomata. Light levels were increased over uniform populations of leaves of plants grown in an environmental chamber. Adaxial stomata of inverted leaves reached maximum water vapor conductances at a light level of 60 micromoles per square meter per second, the same light level at which abaxial stomata of normally oriented leaves reached maximum conductances. Abaxial stomata of inverted leaves reached maximum conductances at a light level of 500 micromoles per square meter per second, the same light level at which adaxial stomata of normally oriented leaves reached maximum conductances. Maximum conductances in both normally oriented and inverted leaves were about 200 millimoles per square meter per second for adaxial stomata and 330 millimoles per square meter per second for abaxial stomata. Regardless of whether leaves were normally oriented or inverted, when light levels were increased to values high enough that upper leaf surfaces reached maximum conductances (about 500 micromoles per square meter per second), light levels incident on lower, shaded leaf surfaces were just sufficient (about 60 micromoles per square meter per second) for stomata of those surfaces to reach maximum conductances. This `coordinated' stomatal opening on the separate epidermes resulted in total leaf conductances for normally oriented and inverted leaves that were the same at any given light level. We conclude that stomata in abaxial epidermes of intact Vicia leaves are not more sensitive to light than those in adaxial epidermes, and that stomata in leaves of this plant do not respond to light alone. Additional factors in bulk leaf tissue probably produce coordinated stomatal opening on upper and lower leaf epidermes to optimally meet photosynthetic requirements of the whole leaf for CO2.  相似文献   
5.
The steady state kinetics of glyceraldehyde 3-phosphate:NADP+ oxidoreductase (GNR) (EC 1.2.1.9) have been investigated. The enzyme exhibits hyperbolic behavior over a wide range of substrate concentrations. Double-reciprocal plots are nearly parallel or distantly convergent with limiting Km values of 2 to 5 micromolar for NADP+ and 20 to 40 micromolar for D-glyceraldehyde 3-phosphate (G3P). The velocity response to NADP+ as the varied substrate is however sigmoidal if G3P concentration exceeds 10 micromolar, whereas the response to G3P may show inhibition above this concentration. This `G3P-inhibited state' is alleviated by saturating amounts of NADP+ or NADPH. Product inhibition patterns indicate NADPH as a potent competitive inhibitor to NADP+ (Ki 30 micromolar) and mixed inhibitor towards G3P, and 3-phosphoglycerate (3PGA) as mixed inhibitor to both NADP+ and G3P (Ki 10 millimolar). The data, and those obtained with dead-end inhibitors, are consistent with a nonrapid equilibrium random mechanism with two alternative kinetic pathways. Of these, a rapid kinetic sequence (probably ordered with NADP+ binding first and G3P binding as second substrate) is dominant in the range of hyperbolic responses. A reverse reaction with 3PGA and NADPH as substrates is unlikely, and was not detected. Of a number of compounds tested, erythrose 4-phosphate (Ki 7 micromolar) and Pi (Ki 2.4 millimolar) act as competitive inhibitors to G3P (uncompetitive towards NADP+) and are likely to affect the in vivo activity. Ribose 5-phosphate, phosphoenolpyruvate, ATP, and ADP are also somewhat inhibitory. Full GNR activity in the leaf seems to be allowed only under high photosynthesis conditions, when levels of several inhibitors are low and substrate is high. We suggest that a main function of leaf GNR is to supply NADPH required for photorespiration, the reaction product 3PGA being cycled back to chloroplasts.  相似文献   
6.
7.
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.   相似文献   
8.
During a survey of the mutations of the low density lipoprotein receptor (LDL-R) gene in Italian patients with familial hypercholesterolemia (FH), we identified a novel point mutation, that creates a new EcoRI site at the 5 end of exon 7, in a heterozygous FH subject (FH-100). The sequence of a cDNA fragment encompassing exon 7 showed the presence of a GT transversion in codon 297; this created a new EcoRI site and produced a missense mutation, leading to a Cys297Phe substitution in repeat A of the epidermal growth factor (EGF) precursor homology domain of LDL-R. Since the substitution of Cys297 disrupts the intracellular transport of the LDL-R protein, as previously demonstrated by site-directed mutagenesis, we suggest that this mutation is the cause of FH in the FH-100 proband. We screened the DNA of 303 Italian FH patients by amplification of exon 7 from genomic DNA followed by digestion with EcoRI or by Southern blotting. Two individuals (FH-64 and FH-127) were found to be carriers of the Cys297Phe mutation. Restriction fragment length polymorphism analysis demonstrated that, in two kindreds (FH-64 and FH-100), the haplotype in linkage with the Cys297Phe mutation was the same, suggesting the presence of a common ancestor. The Cys297Phe mutation has been designated FHTrieste after the name of the city in Northern Italy from which probands FH-100 and FH-127 originate.  相似文献   
9.
In humans, gain-of-function mutations of the calcium-sensing receptor (CASR) gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA) and reducing expression of Plasma Membrane Calcium-ATPase (PMCA). Wild-type CaSR (hCaSR-wt) and its gain-of-function (hCaSR-R990G; hCaSR-N124K) variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate) receptor inputs to cell function.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号