首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   7篇
  国内免费   1篇
  2022年   2篇
  2021年   2篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   1篇
  2015年   7篇
  2014年   10篇
  2013年   5篇
  2012年   8篇
  2011年   6篇
  2010年   4篇
  2009年   6篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1986年   1篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
Illustrated are the principles for isolating proteins from solution by sorption into a polymer gel phase, driven by the addition of a water-soluble polymer to the protein solution. The separation is shown to be analogous to conventional two-phase aqueous extraction. However, the use of a gel phase rather than a solution for absorbing the protein makes separation of the protein from the polymer and the recycling of the gel phase much simpler. The model system used was linear poly(ethylene glycol) (PEG) and dextran gel. Increasing the molecular weight and concentration of the PEG favored sorption by the gel of ovalbumin, bovine serum albumin, cytochrome c, and hemoglobin. The proteins could be quantitatively recovered by immersing the gel in PEG-free solution.  相似文献   
2.
3.
4.
5.
Despite the unprecedented development in identification and characterization of prophenoloxidase (proPO) in commercially important decapods, little is known about the evolutionary relationship, rate of amino acid replacement and differential selection pressures operating on proPO of different species of decapods. Here we report the evolutionary relationship among these nine decapod species based on proPO gene and types of selective pressures operating on proPO codon sites. Our analyses revealed that all the nine decapod species shared a common ancestor. The mean percentage sequence divergence at proPO gene was 34.4+/-0.6%. Pairwise estimates of nonsynonymous to synonymous ratio (omega) for Homarus americanus-H. gammarus is greater than one, therefore indicating adaptive evolution (functional diversification) of proPO in these two species. In contrast, strong purifying selection (omega<1) was observed in all other species pairs. However, phylogenetically closely related decapods revealed relatively higher omega value (omega=0.15+/-0.3) than the distantly related species pairs (omega=0.0075+/-0.005). These discrepancies could be due to higher fixation probability of beneficial mutation in closely related species. Maximum likelihood-based codon substitution analyses revealed a strong purifying selection operating on most of the codon sites, therefore suggesting proPO is functionally constrained (purifying selection). Codon substitution analyses have also revealed the evidence of strong purifying selection in haemocyanin subunits of decapods.  相似文献   
6.
Voltage-gated potassium (Kv) channel gating involves complex structural rearrangements that regulate the ability of channels to conduct K(+) ions. Fluorescence-based approaches provide a powerful technique to directly report structural dynamics underlying these gating processes in Shaker Kv channels. Here, we apply voltage clamp fluorimetry, for the first time, to study voltage sensor motions in mammalian Kv1.5 channels. Despite the homology between Kv1.5 and the Shaker channel, attaching TMRM or PyMPO fluorescent probes to substituted cysteine residues in the S3-S4 linker of Kv1.5 (M394C-V401C) revealed unique and unusual fluorescence signals. Whereas the fluorescence during voltage sensor movement in Shaker channels was monoexponential and occurred with a similar time course to ionic current activation, the fluorescence report of Kv1.5 voltage sensor motions was transient with a prominent rapidly dequenching component that, with TMRM at A397C (equivalent to Shaker A359C), represented 36 +/- 3% of the total signal and occurred with a tau of 3.4 +/- 0.6 ms at +60 mV (n = 4). Using a number of approaches, including 4-AP drug block and the ILT triple mutation, which dissociate channel opening from voltage sensor movement, we demonstrate that the unique dequenching component of fluorescence is associated with channel opening. By regulating the outer pore structure using raised (99 mM) external K(+) to stabilize the conducting configuration of the selectivity filter, or the mutations W472F (equivalent to Shaker W434F) and H463G to stabilize the nonconducting (P-type inactivated) configuration of the selectivity filter, we show that the dequenching of fluorescence reflects rapid structural events at the selectivity filter gate rather than the intracellular pore gate.  相似文献   
7.
8.
9.
10.
Tubulobulbar complexes are actin filament-rich plasma membrane protrusions that form at intercellular junctions in the seminiferous epithelium of the mammalian testis. They are proposed to internalize intact junctions during sperm release and during the translocation of spermatocytes through basal junction complexes between neighboring Sertoli cells. Tubulobulbar complexes morphologically resemble podosomes found at cell/substrate attachments in other systems. In this study we probe apical tubulobulbar complexes in fixed epithelial fragments and fixed frozen sections of rat testis for two key actin-related components found at podosomes, and for the endocytosis-related protein clathrin. N-WASP and cortactin, two regulators of actin network assembly known to be components of podosomes, are concentrated at tubulobulbar complexes. Clathrin-positive structures occur in Sertoli cell regions containing tubulobulbar complexes when analyzed by immunofluorescence microscopy and occur at the ends of the complexes when evaluated by immunoelectron microscopy. Our results are consistent with the conclusion that tubulobulbar complexes are podosome-like structures. We propose that the formation of tubulobulbar complexes may be clathrin initiated and that their growth is due to the dendritic assembly of a membrane-related actin network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号