首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   3篇
  39篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2002年   2篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
排序方式: 共有39条查询结果,搜索用时 0 毫秒
1.
We previously found that BDNF-dependent retrograde trafficking is impaired in AD transgenic mouse neurons. Utilizing a novel microfluidic culture chamber, we demonstrate that Aβ oligomers compromise BDNF-mediated retrograde transport by impairing endosomal vesicle velocities, resulting in impaired downstream signaling driven by BDNF/TrkB, including ERK5 activation, and CREB-dependent gene regulation. Our data suggest that a key mechanism mediating the deficit involves ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that functions to regulate cellular ubiquitin. Aβ-induced deficits in BDNF trafficking and signaling are mimicked by LDN (an inhibitor of UCH-L1) and can be reversed by increasing cellular UCH-L1 levels, demonstrated here using a transducible TAT-UCH-L1 strategy. Finally, our data reveal that UCH-L1 mRNA levels are decreased in the hippocampi of AD brains. Taken together, our data implicate that UCH-L1 is important for regulating neurotrophin receptor sorting to signaling endosomes and supporting retrograde transport. Further, our results support the idea that in AD, Aβ may down-regulate UCH-L1 in the AD brain, which in turn impairs BDNF/TrkB-mediated retrograde signaling, compromising synaptic plasticity and neuronal survival.  相似文献   
2.
We have identified early embryo proteins related to the segmentation gene Krüppel by [35S]methionine pulse labelling and two-dimensional gel electrophoresis. Protein synthesis differences shared by homozygous embryos of two Krüppel alleles when compared to heterozygous and wild-type embryos are reported. The study was extended to syncytial blastoderm stages by pulse labelling and gel analysis of single embryos, using Krüppel-specific proteins from gastrula stages as molecular markers for identifying homozygous Krüppel embryos. Localized expression of interesting proteins was examined in embryo fragments. The earliest differences detected at nuclear migration stages showed unregulated synthesis in mutant embryos of two proteins that have stage specific synthesis in normal embryos. At the cellular blastoderm stage one protein was not synthesized and two proteins showed apparent shifts in isoelectric point in mutant embryos. Differences observed in older embryos included additional proteins with shifted isoelectric points and a number of qualitative and quantitative changes in protein synthesis. Five of the proteins with altered rates of synthesis in mutant embryos showed localized synthesis in normal embryos. The early effects observed are consistent with the hypothesis that the Krüppel product can be a negative or positive regulator of expression of other loci, while blastoderm and gastrula stage shifts in isoelectric point indicate that a secondary effect of Krüppel function may involve post-translational modification of proteins.  相似文献   
3.
Antibodies can undergo a variety of covalent and non-covalent degradation reactions that have adverse effects on efficacy, safety, manufacture and storage. We had identified an antibody to Angiopoietin 2 (Ang2 mAb) that neutralizes Ang2 binding to its receptor in vitro and inhibits tumor growth in vivo. Despite favorable pharmacological activity, the Ang2 mAb preparations were heterogeneous, aggregated rapidly and were poorly expressed. Here, we report the engineering of the antibody variable and constant domains to generate an antibody with reduced propensity to aggregate, enhanced homogeneity, 11°C elevated Tm, 26-fold improved level of expression and retained activity. The engineered molecule, MEDI-3617, is now compatible with the large scale material supply required for clinical trials and is currently being evaluated in Phase 1 in cancer patients. This is the first report to describe the stability engineering of a therapeutic antibody addressing non canonical cysteine residues and the design strategy reported here is generally applicable to other therapeutic antibodies and proteins.  相似文献   
4.
Poghosyan V  Ioannides AA 《Neuron》2008,58(5):802-813
A fundamental question about the neural correlates of attention concerns the earliest sensory processing stage that it can affect. We addressed this issue by recording magnetoencephalography (MEG) signals while subjects performed detection tasks, which required employment of spatial or nonspatial attention, in auditory or visual modality. Using distributed source analysis of MEG signals, we found that, contrary to previous studies that used equivalent current dipole (ECD) analysis, spatial attention enhanced the initial feedforward response in the primary visual cortex (V1) at 55-90 ms. We also found attentional modulation of the putative primary auditory cortex (A1) activity at 30-50 ms. Furthermore, we reproduced our findings using ECD modeling guided by the results of distributed source analysis and suggest a reason why earlier studies using ECD analysis failed to identify the modulation of earliest V1 activity.  相似文献   
5.
The Drosophila developmental antigen recognized by the monoclonal antibody F7D6 is expressed in dividing embryonic and imaginal cells but is lost from all differentiating tissues except electrogenic cells of the nervous system and spontaneously contracting muscles. The 63 kDa antigen is associated with the inner surface of plasma membranes and is expressed in several classes of tumorous mutants of Drosophila. The monoclonal antibody was used for immunoprecipitating the antigen for biochemical characterization and for screening expression vector cDNA libraries. Here we report that this oncodevelopmental antigen is a phosphoprotein and a serine-threonine specific protein kinase. A 1.6 kb cDNA isolated by immunological screening of an ovarian library hybridized to a single band on polytene chromosomes, localizing the gene to 72F on the left arm of the third chromosome. Immunofluorescence assays of deficiency stocks in the region confirmed the location of the gene and identity of the cDNA clone, and mapped the gene between the left breakpoints of Df(3L) st100.62 and Df(3L) stj7, i.e., between 72F3-7 and 73A1-2. The biochemical and genetic properties indicate that this is a novel growth-related kinase of Drosophila.  相似文献   
6.
Studies of intragenomic homologues in bacterial genomes can provide valuable insights into functional divergence. Three GTP cyclohydrolase II homologues in the Streptomyces coelicolor genome have been shown to catalyze two related but distinct reactions [Spoonamore, J. E., Dahlgran, A. L., Jacobsen, N. E., and Bandarian, V. (2006) Biochemistry 45, 12144-12155]. Two of the homologues, SCO 1441 and 2687, convert GTP to 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (APy); one of the homologues (SCO 6655) produces 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (FAPy). We show herein that the differences in the fate of GTP in SCO 6655 relative to SCO 1441 and 2687 results from a single amino acid substitution in the active site of the protein: a Tyr residue in the active sites of SCO 1441 and SCO 2687 is replaced with a Met in SCO 6655. Site-directed interchange of this residue in the three S. coelicolor intragenomic homologues is necessary and sufficient for interconversion of catalytic function which, except for SCO 1441, occurs with little loss of catalytic efficiency. Furthermore, we show that of 14 additional site-directed variants at this position of SCO 6655, His confers catalytic efficiency within 1 order of magnitude of that of the wild type and supports conversion of GTP to both FAPy and APy. The results demonstrate a clear set of mutational events that permit GCH II to produce either FAPy or APy. These results highlight a mechanism whereby functional divergence can be achieved in enzymes that catalyze multistep transformations.  相似文献   
7.
Young AP  Bandarian V 《Biochemistry》2011,50(49):10573-10575
TYW1 catalyzes the condensation of N-methylguanosine with two carbon atoms from an unknown second substrate to form 4-demethylwyosine, which is a common intermediate in the biosynthesis of all of the hypermodified RNA bases related to wybutosine found in eukaryal and archaeal tRNA(Phe). Of the potential substrates examined, only incubation with pyruvate resulted in formation of 4-demethylwyosine. Moreover, incubation with C1, C2, C3, or C1,2,3-(13)C-labeled pyruvate showed that C2 and C3 are incorporated while C1 is not. The mechanistic implications of these results are discussed in the context of the structure of TYW1.  相似文献   
8.
The eyes of the marine snail Bulla gouldiana act as circadian pacemakers. The eyes exhibit a circadian variation in spontaneous optic nerve compound action potential frequency in constant darkness, and are involved in controlling circadian rhythms in behavioral activity expressed by the animal. To initiate an investigation of the molecular aspects of circadian rhythmicity in the Bulla eye and to identify specific molecular markers in the nervous system, we raised monoclonal antibodies (MAb) to the eye and screened them for specific patterns of staining in the eye and brain. Several MAb recognize antigens specific to groups of neurons in the brain, whereas others stain antigens found only in the eye. In addition, some antigens are shared by the eye and the brain. The antigens described here include molecules that mark the lens, retina, neural pathways between the eye and the brain, specific groups of neurons within the central ganglia, and an antigen that is shared by basal retinal neurons (putative ocular circadian pacemaker cells) and glia. These molecular markers may have utility in identifying functionally related groups of neurons, elucidating molecular specializations of the retina, and highlighting pathways used in transmission of information between the retina and the brain.  相似文献   
9.
10.
The radical S-adenosyl-l-methionine (SAM) superfamily is a widely distributed group of iron-sulfur containing proteins that exploit the reactivity of the high energy intermediate, 5'-deoxyadenosyl radical, which is produced by the reductive cleavage of SAM, to carry-out complex radical-mediated transformations. The reactions catalyzed by radical SAM enzymes range from simple group migrations to complex reactions in protein and RNA modification. This review will highlight three radical SAM enzymes that catalyze reactions involving modified guanosines in the biosynthesis pathways of the hypermodified tRNA base wybutosine; secondary metabolites of 7-deazapurine structure, including the hypermodified tRNA base queuosine; and the redox cofactor F(420). This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号