首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Transient receptor potential vanilliod 1 (TRPV1) channels have recently been postulated to play a role in the vascular complications/consequences associated with diabetes despite the fact that the mechanisms through which TRPV1 regulates vascular function are not fully known. Accordingly, our goal was to define the mechanisms by which TRPV1 channels modulate vascular function and contribute to vascular dysfunction in diabetes. We subjected mice lacking TRPV1 [TRPV1((-/-))], db/db, and control C57BLKS/J mice to in vivo infusion of the TRPV1 agonist capsaicin or the α-adrenergic agonist phenylephrine (PE) to examine the integrated circulatory actions of TRPV1. Capsaicin (1, 10, 20, and 100 μg/kg) dose dependently increased MAP in control mice (5.7 ± 1.6, 11.7 ± 2.1, 25.4 ± 3.4, and 51.6 ± 3.9%), which was attenuated in db/db mice (3.4 ± 2.1, 3.9 ± 2.1, 7.0 ± 3.3, and 17.9 ± 6.2%). TRPV1((-/-)) mice exhibited no changes in MAP in response to capsaicin, suggesting the actions of this agonist are specific to TRPV1 activation. Immunoblot analysis revealed decreased aortic TRPV1 protein expression in db/db compared with control mice. Capsaicin-induced responses were recorded following inhibition of endothelin A and B receptors (ET(A) /ET(B)). Inhibition of ET(A) receptors abolished the capsaicin-mediated increases in MAP. Combined antagonism of ET(A) and ET(B) receptors did not further inhibit the capsaicin response. Cultured endothelial cell exposure to capsaicin increased endothelin production as shown by an endothelin ELISA assay, which was attenuated by inhibition of TRPV1 or endothelin-converting enzyme. TRPV1 channels contribute to the regulation of vascular reactivity and MAP via production of endothelin and subsequent activation of vascular ET(A) receptors. Impairment of TRPV1 channel function may contribute to vascular dysfunction in diabetes.  相似文献   
2.
Although laboratory data clearly suggest a role for oxidants (dioxygen and free radicals derived from dioxygen) in the pathogenesis of many age-related and degenerative diseases (such as arthrosis and arthritis), methods to image such species in vivo are still very limited. This methodological problem limits physiopathologic studies about the role of those species in vivo, the effects of their regulation using various drugs, and the evaluation of their levels for diagnosis of degenerative diseases. In vivo electron paramagnetic resonance (EPR) imaging and spectroscopy are unique, noninvasive methods used to specifically detect and quantify paramagnetic species. However, two problems limit their application: the anatomic location of the EPR image in the animal body and the relative instability of the EPR probes. Our aim is to use EPR imaging to obtain physiologic and pathologic information on the mouse knee joint. This article reports the first in vivo EPR image of a small tissue, the mouse knee joint, with good resolution (≈ 160 μm) after intra-articular injection of a triarylmethyl radical EPR probe. It was obtained by combining EPR and x-ray micro-computed tomography for the first time and by taking into account the disappearance kinetics of the EPR probe during image acquisition to reconstruct the image. This multidisciplinary approach opens the way to high-resolution EPR imaging and local metabolism studies of radical species in vivo in different physiologic and pathologic situations.  相似文献   
3.
Deforestation, urban development, and global climate change can lead to dramatic changes of ecological communities and increase prevalence of infectious diseases at higher latitudes and altitudes. Identification of factors responsible for the prevalence of parasites is of crucial importance to understand the dynamics of parasite distribution in a changing environment. Mountain areas are especially suitable for studies of factors governing parasite distribution and prevalence due to heterogeneity of landscapes, climatic regimes, and other biotic and abiotic conditions. We examined 903 avian blood smears collected in mountains of Transcaucasia for prevalence of Haemoproteus and Plasmodium. We found that the haemoparasites prevalence differed among bird species and localities, highlighting the environmental components affecting disease distribution. The prevalence of both Haemoproteus and Plasmodium was significantly higher in males, adults, and migratory species than in females, juveniles, and resident species. Geographic Information System (GIS) and linear regression analyses revealed that elevation and monthly average precipitation were strongly correlated with proportion of infected birds with Plasmodium, indicating that the prevalence increased with increase of monthly average temperature and elevation. Birds from forested and high grassed areas were also more infected with avian haemosporidia. Our study provides baseline data for modelling of parasites distribution under global climate change scenarios, which is of great importance for monitoring and management of communities and environment for conservation and human health.  相似文献   
4.
We have previously shown transient receptor potential vanilloid subtype 1 (TRPV1) channel-dependent coronary function is compromised in pigs with metabolic syndrome (MetS). However, the mechanisms through which TRPV1 channels couple coronary blood flow to metabolism are not fully understood. We employed mice lacking TRPV1 [TRPV1((-/-))], db/db diabetic, and control C57BKS/J mice to determine the extent to which TRPV1 channels modulate coronary function and contribute to vascular dysfunction in diabetic cardiomyopathy. Animals were subjected to in vivo infusion of the TRPV1 agonist capsaicin to examine the hemodynamic actions of TRPV1 activation. Capsaicin (1-100 μg·kg(-1)·min(-1)) dose dependently increased coronary blood flow in control mice, which was inhibited by the TRPV1 antagonist capsazepine or the nitric oxide synthase (NOS) inhibitor N-nitro-l-arginine methyl ester (L-NAME). In addition, the capsaicin-mediated increase in blood flow was attenuated in db/db mice. TRPV1((-/-)) mice exhibited no changes in coronary blood flow in response to capsaicin. Vasoreactivity studies in isolated pressurized mouse coronary microvessels revealed a capsaicin-dependent relaxation that was inhibited by the TRPV1 inhibitor SB366791 l-NAME and to the large conductance calcium-sensitive potassium channel (BK) inhibitors iberiotoxin and Penetrim A. Similar to in vivo responses, capsaicin-mediated relaxation was impaired in db/db mice compared with controls. Changes in pH (pH 7.4-6.0) relaxed coronary vessels contracted to the thromboxane mimetic U46619 in all three groups of mice; however, pH-mediated relaxation was blunted in vessels obtained from TRPV1((-/-)) and db/db mice compared with controls. Western blot analysis revealed decreased myocardial TRPV1 protein expression in db/db mice compared with controls. Our data reveal TRPV1 channels mediate coupling of myocardial blood flow to cardiac metabolism via a nitric oxide-dependent, BK channel-dependent pathway that is corrupted in diabetes.  相似文献   
5.
Aging is accompanied by changes in activity of electron-transport enzyme complexes in myocardial mitochondria of old rats and by increased sensitivity of the mitochondrial permeability transition pore (MPTP) to inductors of its opening (Ca2+ and phenylarsine oxide). We also observed activation of lipid and protein free-radical peroxidation processes. Administration of a complex of biologically active substances that included precursors and modulators of coenzyme Q biosynthesis (α-tocopherol acetate, 4-hydroxybenzoic acid, and methionine) caused the increase in coenzyme Q content, correction of functional activity of mitochondrial electron-transport chain enzyme complexes, the decrease in intensity of lipid and protein free-radical peroxidation in the heart mitochondria and the decrease in sensitivity of mitochondrial permeability transition pore to inductors of its opening. This complex may be recommended for treatment of mitochondrial dysfunction in various pathologies of cardiovascular system, including in aging.  相似文献   
6.
Cancer prevention uses natural, synthetic, or biological chemical agents to reverse, suppress, or prevent carcinogenic progression. Chemoprevention trials are based on the hypothesis that interruption of the biological process involved in carcinogenesis will inhibit this process and, in turn, reduce cancer incidence. Bladder cancer chemoprevention trials demonstrate conflicting findings. Dietary fat, soy protein, garlic, and selenium have been reported to possess anticancer properties in the bladder, but they still remain largely unstudied in vivo. Regarding prostate cancer, vitamin D deficiency was reported to increase risk for the disease, and sunlight exposure is inversely proportional to prostate cancer mortality. The Prostate Cancer Prevention Trial reported a 24.4% prostate cancer incidence with placebo, compared with 18.4% with finasteride, and a reduction of 24.8% over 7 years. Dutasteride, a dual inhibitor of type 1 and type 2 5alpha-reductase, is the subject of the Reduction by Dutasteride of Prostate Cancer Events trial. Results are awaited from that study.  相似文献   
7.
Liver cancer, predominantly hepatocellular carcinoma (HCC), represents a complex and fatal malignancy driven primarily by oxidative stress and inflammation. Due to dismal prognosis and limited therapeutic intervention, chemoprevention has emerged as a viable approach to reduce the morbidity and mortality of HCC. Pomegranate fruit is a rich source of phytochemicals endowed with potent antioxidant and anti-inflammatory properties. We previously reported that pomegranate phytochemicals inhibit diethylnitrosamine (DENA)-initiated hepatocarcinogenesis in rats though nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant mechanisms. Since Nrf2 also acts as a key mediator of the nuclear factor-kappaB (NF-κB)-regulated inflammatory pathway, our present study investigated the anti-inflammatory mechanisms of a pomegranate emulsion (PE) during DENA-induced rat hepatocarcinogenesis. Rats were administered with PE (1 or 10 g/kg) 4 weeks before and 18 weeks following DENA initiation. There was a significant increase in hepatic expressions of inducible nitric oxide synthase, 3-nitrotyrosine, heat shock protein 70 and 90, cyclooxygenase-2 and NF-κB in DENA-exposed rat livers. PE dose-dependently suppressed all aforementioned elevated inflammatory markers. A conspicuous finding of this study involves lack of cardiotoxicity of PE as assessed by monitoring cardiac function using noninvasive echocardiography. Our results provide substantial evidence that suppression of the inflammatory cascade through modulation of NF-κB signaling pathway may represent a novel mechanism of liver tumor inhibitory effects of PE against experimental hepatocarcinogenesis. Data presented here coupled with those of our earlier study underline the importance of simultaneously targeting two interconnected molecular circuits, namely, Nrf2-mediated redox signaling and NF-κB-regulated inflammatory pathway, by pomegranate phytoconstituents to achieve chemoprevention of HCC.  相似文献   
8.
In this paper, we explore the potential of the plasmonic metal–insulator–metal (MIM) periodically graded structure. Based on the coupled modes approach, an analytical model has been observed for the surface plasmon polariton (SPP) propagation. The band modes of SPP can be also supported by the MIM structure and we have analyzed the strong dependence of band width on structure parameters. The obtained analytical expressions allow one to easily choose the structure parameters for the desired band width.  相似文献   
9.
Studies of substrate specificity revealed that the D-aminoacylase of Rhodococcus armeniensis AM6.1 strain exhibits absolute stereospecificity to the D-stereoisomers of N-acetyl-amino acids. The enzyme is the most active reacted with N-acetyl-D-methionine, as well as with aromatic and hydrophobic N-acetylamino acids and interacts weakly with the basic substrates. It is practically not reacted with acidic and hydrophilic N-acetyl-amino acids. Michaelis constants (Km) and maximum reaction velocities (Vmax) were calculated, using linear regression analysis, for the following substrates: N-acetyl-D-methionine, N-acetyl-D-alanine, N-acetyl-D-phenylalanine, N-acetyl-D-tyrosine, N-acetyl-D-valine, N-acetyl-D-oxyvaline, N-acetyl- D-leucine. Substrate inhibition of D-aminoacylase was displayed with N-acetyl-D-leucine (Ks = 35.5 ± 28.3 mM) and N-acetyl-DL-tyrosine (Ks = 15.8 ± 4.5 mM). Competitive inhibition of the enzyme with product–acetic acid (Ki = 104.7 ± 21.7 mM, Km = 2.5 ± 0.5 mM, Vmax = 25.1 ± 1.5 U/mg) was observed.  相似文献   
10.
Immobilization of D-aminoacylase of the strain Rhodococcus armeniensis AM6.1 was carried out on the silochrome C-80 with a yield of enzymatic activity of 20%. The temperature and pH optima, thermal stability and dependence of thermal stability on pH for free and immobilized enzymes were compared. The possibility of using free and immobilized D-aminoacylases to produce D-amino acids from their racemic mixtures was demonstrated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号