首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  2022年   2篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2004年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Electromagnetic fields (EMFs) are reported to interfere with chemical reactions involving free radical production. Coenzyme Q10 (CoQ10) is a strong antioxidant with some neuroprotective activities. The purpose of this study was to examine and compare the neuroprotective effects of EMF and CoQ10 in a mouse model of hippocampal injury. Hippocampal injury was induced in mature female mice (25–30 g), using an intraperitoneal injection of trimethyltin hydroxide (TMT; 2.5 mg/kg). The experimental groups were exposed to EMF at a frequency of 50 Hz and intensity of 5.9 mT for 7 hr daily over 1 week or treated with CoQ10 (10 mg/kg) for 2 weeks following TMT injection. A Morris water maze apparatus was used to assess learning and spatial memory. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) tests were also performed for the histopathological analysis of the hippocampus. Antiapoptotic genes were studied, using the Western blot technique. The water maze test showed memory improvement following treatment with CoQ10 and coadministration of CoQ10 + EMF. The Nissl staining and TUNEL tests indicated a decline in necrotic and apoptotic cell count following treatment with CoQ10 and coadministration of CoQ10 + EMF. The Western blot study indicated the upregulation of antiapoptotic genes in treatment with CoQ10, as well as coadministration. Also, treatment with EMF had no significant effects on reducing damage induced by TMT in the hippocampus. According to the results, EMF had no significant neuroprotective effects in comparison with CoQ10 on hippocampal injury in mice. Nevertheless, coadministration of EMF and CoQ10 could improve the neuroprotective effects of CoQ10.  相似文献   
2.
A halotolerant, thermotolerant, and facultative biosurfactant producing bacterium was identified as a strain of Bacillus mojavensis based on the phenotypic data, a phylogenetic analysis, and DNA-DNA relatedness with closely-related species. This strain grew at temperatures and salinities up to 55°C and 0 ∼ 10% (w/v) NaCl, respectively, and under anaerobic conditions. A batch fermentation showed that this strain secreted a lipopeptide biosurfactant that can reduce surface tension to 27 mN/m while growing on mineral medium. The emulsifying activity of the cell-free supernatant and stability of the formed emulsions were studied at various temperatures and salinities. The results showed that the ability to significantly reduce surface tension was not sufficient to form stable emulsions. The ability of this strain to grow and reduce surface tension under a wide range of salinities and temperatures gives it an advantage for many applications.  相似文献   
3.
Several facultative bacterial strains tolerant to high temperature and salinity were isolated from the oil reservoir brines of an Iranian oil field (Masjed-I Soleyman). Some of these isolates were able to grow up to 60°C and at high concentration of NaCl (15% w/v). One of the isolates grew at 40°C, while it was able to grow at 15% w/v NaCl. Tolerances to NaCl levels decreased as the growth temperatures were increased. Surfactant production ability was detected in some of these isolates. The use of biosurfactant is considered as an effective mechanism in microbial-enhanced oil recovery processes detected in some of these isolates. The surfactant producers were able to grow at high temperatures and salinities to about 55°C and 10% w/v, respectively. These isolates exhibited morphological and physiological characteristics of the Bacillus genus. The partial sequencing of the 16S ribosomal deoxyribonucleic acid gene of the selected isolates was assigned them to Bacillus subtilis group. The biosurfactant produced by these isolates caused a substantial decrease in the surface tension of the culture media to 26.7 mN/m. By the use of thin-layer chromatography technique, the presence of the three compounds was detected in the tested biosurfactant. Infrared spectroscopy and 1H nuclear magnetic resonance analysis were used, and the partial structural characterization of the biosurfactant mixture of the three compounds was found to be lipopeptidic in nature. The possibility of use of the selected bacterial strains reported, in the present study, in different sectors of the petroleum industry has been addressed.  相似文献   
4.
5.
Sesame seed is one of the main nutrient substances which is used in the food industries of Khorasan Razavi, Iran. Because it is likely that stored sesame seeds are contaminated with mycotoxins, the levels of aflatoxins (AF) in five lots of imported sesame seeds before their distribution to the market were studied during one year. A total of 269 sub-samples were obtained from a total of 9,321 tons of sesame seeds from five importing companies. Aflatoxins at >1 μg/kg were found in 50 % of all samples, but at low levels in most cases, which is illustrated by mean AFB1 and total AF levels of 1.25?±?3.70 and 1.43?±?4.38 μg/kg, respectively. A few (1.9 %) samples exceeded the National Iranian Standard maximum accepted level for AFB1 (5 μg/kg) or total AF (15 μg/kg); the maximum total AF level found in one sample was 48 μg/kg. The results indicate that the risk of a violative AF contamination in imported sesame seeds is not negligible but is currently relatively low.  相似文献   
6.
7.

The potential of Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene (DBT) was studied in growing and resting cell conditions. The results of both conditions showed that sulfur was removed from DBT which accompanied by the formation of 2-hydroxybiphenyl (2-HBP). In growing cell experiments, glucose was used as an energy supplying substrate in initial concentrations of 55 mM (energy-limited) and 111 mM (energy-sufficient). The growing cell behaviors were quantitatively described using the logistic equation and maintenance concept. The results indicated that 2-HBP production was higher for the energy-sufficient cultures, while the values of the specific growth rate and the maintenance coefficient for these media were lower than those of the energy-limited cultures. Additionally, the kinetic studies showed that the half-saturation constant for the energy-limited cultures was 2 times higher than the energy-sufficient ones where the inhibition constant (0.08 mM) and the maximum specific DBT desulfurization rate (0.002 mmol gcell −1 h−1) were almost constant. By defining desulfurizing capacity (D DBT) including both the biomass concentration and time to reach a particular percentage of DBT conversion, the best condition for desulfurizing cell was determined at 23% gcell L−1 h−1 which corresponded with the resting cells that were harvested at the mid-exponential growth phase.

  相似文献   
8.
Summary Olive oil mill wastewater (OMW) has a high organic load, and this is a serious concern of the olive industry. Conventional biological wastewater treatments, despite their simplicity and suitable performance are ineffective for OMW treatment since phenolics possess antimicrobial activity. In order to carry out a proper treatment of OMW, use of a microorganism able to degrade the phenolics is thus necessary. In this study the ability of Phanerochaete chrysosporium to degrade the phenolic compounds of OMW and to decrease the chemical oxygen demand (COD) using cells immobilized on loofah was examined. The basal mineral salt solution along with glucose, ammonium sulfate and yeast extract was used to dilute the OMW appropriately. The fungus did not grow on the concentrated OMW. The extent of removal in this bio-treatment, of total phenols (TP) and the COD were 90 and 50%, respectively, while the color and aromaticity decreased by 60 and 95%, respectively. The kinetic behavior of the loofah-immobilized fungus was found to follow the Monod equation. The maximum growth rate μmax was 0.045 h−1 while the Monod constant based on the consumed TP and COD were (mg/l) 370 and 6900, respectively.  相似文献   
9.
Decolorization of molasses wastewater (MWW) from an ethanolic fermentation plant by Phanerochaete chrysosporium was studied. By diluting MWW properly (10%v/v) and incubating it with an appropriate concentration of the spores (2.5 × 106/ml), extensive decolorization occurred (75%) on day 5 of the incubation. The colour removal ability was found to be correlated to the activity of ligninolytic enzyme system: lignin peroxidase (LiP) activity was 185 U/l while manganese peroxidase (MnP) activity equaled 25 U/l. Effects of some selected operating variables were studied: manganese(II), veratryl alcohol (VA), glucose as a carbon source and urea and ammonium nitrate, each as a source of nitrogen. Results showed that the colour reduction and LiP activity were highest (76% and 186 U/l, respectively) either when no Mn(II) was added or added at the lowest level tested (0.16 mg/l to provide 0.3 mg/l). Activity of MnP was highest (25 U/l) when Mn(II) added to the diluted MWW at the highest level (100 ppm) while activity of LiP was lowest (7.1 U/l) at this level of added Mn(II). The colour reduction in the presence of the added VA was shown to be little less than in its absence (70 vs. 75%). When urea as an organic source of nitrogen for the fungus, was added to the MWW, the decolorizing activity of P. chrysosporium decreased significantly (15 vs. 75%) and no activities were detected for LiP and MnP. Use of ammonium nitrate as an inorganic source of nitrogen did not show such a decelerating effects, although no improvements in the metabolic behavior of the fungus (i.e., LiP and MnP activities) deaccelerating was observed. Effects of addition of glucose was also discussed.  相似文献   
10.
Journal of Physiology and Biochemistry - Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is rapidly becoming a public health problem. An imbalance in lipid...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号