首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   6篇
  2018年   3篇
  2017年   1篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   6篇
  2011年   10篇
  2010年   14篇
  2009年   12篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   8篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   6篇
  1996年   4篇
  1995年   8篇
  1994年   5篇
  1993年   2篇
  1991年   3篇
  1990年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1969年   2篇
  1967年   1篇
  1959年   2篇
  1958年   7篇
  1957年   5篇
  1956年   10篇
  1955年   5篇
  1954年   2篇
  1953年   4篇
  1952年   10篇
  1951年   3篇
  1949年   1篇
  1948年   2篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
1.
2.
1. Ship‐induced waves can affect the physical characteristics of lake and river shorelines, and laboratory studies have shown effects on littoral invertebrates. Here, we explored whether these effects could be observed under field conditions along a natural lake shore affected by wave sequences (trains) produced by boats. 2. Individuals of five invertebrate species (Bithynia tentaculata, Calopteryx splendens, Dikerogammarus villosus, Gammarus roeselii, Laccophilus hyalinus) were exposed to waves with increasing shear stress in five habitats differing in structural complexity. 3. Detachment of invertebrates increased with increasing shear stress and was best modelled using sigmoid response curves. Habitat structural complexity mitigated the effects of shear stress, and detachment rate was influenced more by habitat type than by species. A threshold (90% of the individual invertebrates unaffected) stress level of 0.64 N m?2 was found for a structurally complex reed habitat, compared to 0.37 N m?2 for a simple sand habitat. 4. Shear stress associated with wave trains created by recreational boating at a distance of 35 m from the shore and at a speed of 11 km h?1 resulted in 45% detachment of littoral invertebrates. Decreasing the boat‐to‐shore distance to 20 m increased wave shear stress by 30% and invertebrate detachments up to 75%. 5. Disturbance of littoral habitats and invertebrate assemblages are widespread in inland waters used for recreational and/or commercial navigation. Our findings show that the integrity of littoral zones of navigable surface waters could be much improved by implementing management measures such as physically protecting complex habitats with dense reed belts and tree roots, and reducing boat speeds and increasing their minimum shoreline distance.  相似文献   
3.
Excitation-Contraction Coupling in Crayfish   总被引:8,自引:0,他引:8  
High-sensitivity recording techniques demonstrate a continuousrelation between the onset and magnitude ot tension and themembrane depolarization that is induced by increasing K in thebathing medium or by intracellularly applied outward currents.This finding is not consistent with the mechanism of signallinge-c coupling by electrotonic spread of a "critical" depolarizationinward along the membrane of the transverse tubular system.It is in accord, however, with the channelled current mechanismthat is based on the known anion-permselectivity of the membranein the terminals of the TTS. The channelled-current model alsopredicts a direct role of Cl and a possible interaction betweenCa and CI in e-c coupling. The initiation and maintenance oftension as well as its magnitude, are in fact dependent uponthe concentrations of Ca and Cl in the medium. Thus, both thesignalling to, and the activation of, the contractile systemappear to be performed by a flow of current in the loop: cellmembrane – cell interior – TTS membrane –TTS channels – exterior, as is envisaged in the channelled-currentmodel of e-c coupling.  相似文献   
4.
The effects of elevated carbon dioxide (CO2) concentration on plant water use are best evaluated on plants grown under field conditions and with measurement techniques that do not disturb the natural function of the plant. Heat balance sap flow gauges were used on individual main stems of wheat (Triticum aestivum L. cv Yecora rojo) grown under normal ambient conditions (control) and in a free-air CO2 enrichment (FACE) system in Arizona with either high (control + high H2O = CW; FACE + high H2O = FW) or low (control + low H2O = CD; FACE + low H2O = FD) irrigation regimens. Over a 30d period (stem elongation to anthesis), combinations of treatments were monitored with,10–40 gauges per treatment. The effects of increased CO2 on tiller water use were inconsistent in both the diurnal patterns of sap flow and the statistical analyses of daily sap flow (Ftot). Initial results suggested that the reductions in Ftot, from CO2 enrichment were small (,0–10%) in relation to the H2O treatment effect (,20–30%). For a 3d period, Ftot of FW was,19–26% less than that of CW (P = 0.10). Examination of the different sources of variation in the study revealed that the location of gauges within the experimental plots influenced the variance of the sap flow measurements. This variation was probably related to positional variation in subsurface drip lines used to irrigate plots. A sampling design was proposed for use of sap flow gauges in FACE systems with subsurface irrigation that takes into account the main treatment effects of CO2 enrichment and the other sources of variation identified in this study. Despite the small and often statistically non-significant differences in Ftot between the CW and FW treatments, cumulative water use of the FW treatment at the end of the first three test periods ranged from 7 to 23% lower than that of the CW treatment. Differences in sap flow between FW and CW compared well with treatment differences in evapotranspiration. The results of the study, based on the first reported sap flow measurements of wheat, suggest that irrigation requirements for wheat production, in the present climatic regimen of the south-western US, may be predicted to decrease slightly because of increasing atmospheric CO2.  相似文献   
5.
Measurements of the organic carbon inventory, its stable isotopic composition and radiocarbon content were used to deduce vegetation history from two soil profiles in arboreal and grassy savanna ecotones in the Brazilian Pantanal. The Pantanal is a large floodplain area with grass-dominated lowlands subject to seasonal flooding, and arboreal savanna uplands which are only rarely flooded. Organic carbon inventories were lower in the grassy savanna site than in the upland arboreal savanna site, with carbon decreasing exponentially with depth from the surface in both profiles. Changes in 13C of soil organic matter (SOM) with depth differed markedly between the two sites. Differences in surface SOM 13C values reflect the change from C3 to C4 plants between the sites, as confirmed by measurements of 13C of vegetation and the soil surface along a transect between the upland closed-canopy forest and lowland grassy savanna. Changes of 13C in SOM with depth at both sites are larger than the 3–4 per mil increases expected from fractionation associated with organic matter decomposition. We interpret these as recording past changes in the relative abundance of C3 and C4 plants at these sites. Mass balances with 14C and 13C suggest that past vegetational changes from C3 to C4 plants in the grassy savanna, and in the deeper part of the arboreal savanna, occurred between 4600 and 11 400 BP, when major climatic changes were also observed in several places of the South American Continent. The change from C4 to C3, observed only in the upper part of the arboreal savanna, was much more recent (1400 BP), and was probably caused by a local change in the flooding regime.  相似文献   
6.
7.
The elite UK winter wheat cv. Riband was transformed with constructs containing rbcS in sense and antisense orientations driven by the maize ubiquitin promoter with a transformation efficiency of 1.2%. Of 77 primary transformants 31% of the sense-rbcS transformed lines and 78% of the antisense-rbcS transformed lines had decreased rubisco content compared to wild-type and marker-only controls, with decreases of up to 60%. However, in the T1 progeny which inherited the transgene, only 5% showed significantly decreased rubisco content and these effects were on the margins of significance. Five potential T2 homozygous lines from T1 parents which had transgene segregation consistent with a single locus were identified. There was no significant decrease in rubisco content relative to wild-type in any of these lines (LSD of 8% for P= 0.05). Expression of antisense rbcS transgenes in two of these T2 lines was low but was increased following exposure of the plants to 37°C for 48 h. However this did not induce a significant decrease in rubisco protein content relative to controls. Southern analysis of two antisense lines showed that they had low copy number and 1–2 insertion events. In one of the two lines there was increased methylation of the ubiquitin intron in T2 samples compared to the TO primary transformant. Further work is required to establish whether methylation occurred in all the lines which lost the phenotype, and therefore the likelihood of this being the cause. The disappearance of the decreased rubisco-content phenotype between generations may therefore be attributable to (1) greater activity of the ubiquitin promoter due to greater stress in the T0 generation plants and/or (2) increased methylation of the transgene promoter region between generations.  相似文献   
8.
Powers of the Secular Modern: Talal Asad and His Interlocutors . David Scott and Charles Hirschkind, eds. Stanford: Stanford University Press, 2006. 355 pp.  相似文献   
9.
Genetic variation was examined in five microsatellite loci to seek evidence of genetic differentiation and restricted gene flow that would support the taxonomic division of Gymnadenia into three species ( G. borealis , G. conopsea , and G. densiflora ). A total of 107 alleles was detected in 17 populations from England, Scotland, and Ireland. The mean expected heterozygosities ranged from 0.48 to 0.81. The differentiation in allele frequencies amongst populations that had been assigned to each taxon on the basis of morphology was sufficiently large to support the taxa as distinct species. Phylogenetic trees based on microsatellite allele frequencies, as well as assignment tests, supported the existence of three distinct groups with at least partial restriction of gene flow between them. There was substantial homozygote excess, leading to high F IS estimates, for most loci in most populations. This is unlikely to have been a result of widespread null alleles, and more probably reflects a high level of inbreeding in G. conopsea . This inference requires further investigation. The implications of the results of this and other taxonomic studies for the conservation of Gymnadenia in Britain are discussed.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 349–360.  相似文献   
10.
Leaf longevity and nutrient resorption efficiency are important strategies to conserve plant nutrients. Theory suggests a negative relationship between them and also proposes that high concentration of phenolics in long‐lived leaves may reduce nutrient resorption. In order to provide new evidence on these relationships, we explored whether N‐resorption efficiency is related to leaf longevity, secondary compounds and other leaf traits in coexisting plant species of different life forms in the arid Patagonian Monte, Argentina. We assessed N‐resorption efficiency, green leaf traits (leaf mass per area (LMA), leaf longevity and lignin, total soluble phenolics and N concentrations) and N concentration in senescent leaves of 12 species of different life forms (evergreen shrubs, deciduous shrubs and perennial grasses) with contrasting leaf traits. We found that leaf longevity was positively correlated to LMA and lignin, and negatively correlated to N concentration in green leaves. N concentrations both in green and senescent leaves were positively related. N‐resorption efficiency was not associated with the concentration of secondary compounds (total soluble phenolics and lignin) but it was negatively related to LMA and leaf longevity and positively related to N concentration in green leaves. Furthermore, leaf traits overlapped among life forms highlighting that life forms are not a good indicator of the functional properties (at least in relation to nutrient conservation) of species. In conclusion, our findings indicated that differences in N‐resorption efficiency among coexisting species were more related to N concentration in green leaves, leaf lifespan and LMA than to the presence of secondary compounds at least those assessed in our study (soluble phenolics and lignin). Accordingly, N‐resorption efficiency seems to be modulated, at least in part, by the productivity–persistence trade‐off.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号