首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1969年   2篇
  1968年   4篇
  1967年   3篇
  1966年   1篇
  1965年   2篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
1.
Peroxisomal chain-shortening of prostaglandin F2 alpha   总被引:2,自引:0,他引:2  
We have recently reported that prostaglandin F2 alpha can be chain-shortened by isolated rat liver peroxisomes. In the present study it is further established by cell fractionation experiments that the enzymes involved in this reaction are localized to peroxisomes. Under the conditions employed, the highest activity was found in the light mitochondrial fraction. Further fractionation of the light mitochondrial fraction by sucrose density gradient centrifugation showed that the prostaglandin oxidation activity comigrated with peroxisomal marker enzymes. Di(2-ethylhexyl)phthalate treatment resulted in a tenfold increased capacity for the conversion of prostaglandin F2 alpha into tetranorprostaglandin F1 alpha. The reaction was not inhibited by KCN. The reaction was further characterized with respect to cofactor requirements. The prostaglandin oxidation was found to be completely dependent on NAD, CoA, ATP, Mg2+ and was stimulated by FAD. Incubation of prostaglandin E2 with peroxisomes resulted in conversion into several products. After alkaline hydrolysis, one of these was identified as tetranorprostaglandin B1.  相似文献   
2.
We have recently shown that isolated rat liver peroxisomes can chain-shorten prostaglandin F2 alpha and prostaglandin E2 to tetranor-metabolites. In the present report dinor-metabolites of these two prostaglandins were also identified, suggesting that the peroxisomal chain-shortening reaction of prostaglandins is a beta-oxidation reaction. Furthermore, an intermediate containing an extra double bond was isolated from incubates of prostaglandin F2 alpha with peroxisomes. This intermediate was tentatively assigned the structure 2,3-dehydroprostaglandin F2 alpha. Prostaglandin E1 and a major circulating prostaglandin F2 alpha metabolite were also metabolized to chain-shortened products by peroxisomes. The accumulation of the 2,3-dehydro-metabolite and the dinor-metabolites suggest that the peroxisomal beta-oxidation sequence is not tightly coupled, in contrast to mitochondrial fatty acid oxidation.  相似文献   
3.
4.
Ten pregnant women (7th–8th week of pregnancy) obtained an intravenous infusion of 15-methyl-prostaglandin-F (2.5 μg/min) until clinical signs of abortion occurred or up to 7 hours. Surgical removal of the products of conception was performed 4–7 hours after the start of the infusion. Blood samples were taken prior to and during the infusion and then during the post-abortion period. The plasma levels of both progesterone and estradiol exhibited a significant decrease (p<0.001 and p<0.05, respectively) one hour after the beginning of infusion and remained reduced by approximately 35 and 45 per cent, respectively, during the entire infusion period. A drop in the levels of both steroids was seen after surgical interruption. This was followed by a gradual decrease to non-pregnancy levels. The levels of cortisol increased significantly (p<0.01) by approximately 60 per cent, starting with the second hour of infusion. Following surgical interruption, the levels dropped to pre-infusion values. 17-Hydroxyprogesterone levels increased (p<0.05) above the pretreatment levels by approximately 25 per cent, starting with the third hour of infusion. These levels were not correlated with those of cortisol during the infusion period. Following surgical interruption the plasma levels of 17-hydroxyprogesterone returned to non-pregnancy levels.  相似文献   
5.
6.
Infants with the cholesterol synthesis defect Smith- Lemli-Opitz syndrome (SLO) have reduced activity of the enzyme 7-dehydrocholesterol-7-reductase and accumulate 7-dehydrocholesterol, with the highest concentration in the brain. As a result of the generally reduced content of cholesterol, plasma levels of oxysterols would be expected to be reduced. 24S-hydroxycholesterol is almost exclusively formed in the brain, whereas 27-hydroxycholesterol is mainly formed from extrahepatic and extracerebral cholesterol. In accordance with the expectations, sterol-correlated plasma levels of 24S-hydroxycholesterol were reduced in infants with SLO (by about 50%). In contrast, the sterol-correlated levels of 27-hydroxycholesterol in the circulation were markedly increased. No side-chain oxidized metabolites of 7-dehydrocholesterol were detected in the circulation. Recombinant human CYP27 had markedly lower 27-hydroxylase activity toward 7-dehydrocholesterol than towards cholesterol. HEK293 cells expressing 24S-hydroxylase active toward cholesterol had no significant activity towards 7-dehydrocholesterol. The plasma levels of 3 beta,7 alpha-dihydroxy-5-cholestenoic in the patients acid were reduced, suggesting a generally reduced metabolism of 27-oxygenated steroids. It is concluded that the accumulation of 7-dehydrocholesterol in the brains of patients with SLO reduces formation of 24S-hydroxycholesterol. The condition is associated with markedly increased circulating levels of 27-hydroxycholesterol, most probably due to reduced metabolism of this oxysterol. We discuss the possibility that the circulating levels of 24S-hydroxycholesterol may be used as a marker for the severity of the disease.--Bj?rkhem, I., L. Starck, U. Andersson, D. Lütjohann, S. von Bahr, I. Pikuleva, A. Babiker, and U. Diczfaulsy. Oxysterols in the circulation of patients with the Smith-Lemli-Opitz syndrome: abnormal levels of 24S- and 27-hydroxycholesterol. J. Lipid Res. 2001. 42: 366--371.  相似文献   
7.
Oxidant stress seems to play a role in several setting of human pathology, such as atherosclerosis, cancer, and aging. The study of oxidant stress in human disease should be based on the evaluation of either sensitive and specific markers of enhanced oxidant stress, such as oxysterols, or antioxidant defense, by measuring alpha-tocopherol. We have developed a rapid method to measure the oxysterols 7beta-hydroxycholesterol and 7-ketocholesterol in plasma (50 healthy subjects) and tissue as an index of oxidant stress in vivo, and from the same sample alpha-tocopherol content. The mean plasma concentration of 7beta-hydroxycholesterol and 7-ketocholesterol was 4.6+/-1.1 and 13.4+/-7.6 ng/mL, respectively. Plasma alpha-tocopherol concentration was 5.8+/-1.0 micromol/mol cholesterol. Samples from atherosclerotic plaques contained 20 times more cholesterol, about 45 times higher oxysterols levels, and 600 times more alpha-tocopherol compared to normal arteries. No significant difference in cholesterol and oxysterol content was observed between cirrhotic and normal liver. However, cirrhotic liver contained significantly smaller concentration of alpha-tocopherol compared to normal liver. In conclusion, we have developed a rapid and reliable method for the assay of cholesterol oxidation products and alpha-tocopherol in plasma and tissue useful for estimation of oxidant stress/antioxidant balance.  相似文献   
8.
Oxysterols are oxygenated derivatives of cholesterol that are intermediates in cholesterol excretion pathways. They may also be regarded as transport forms of cholesterol and introduction of an additional hydroxyl group facilitates flux of cholesterol across cell membranes and the blood-brain barrier. According to current concepts, oxysterols are also mediating a number of cholesterol-induced metabolic effects. The recent discovery of nuclear receptors with an affinity for oxysterols has given support to this concept. Nuclear receptors such as liver X receptor alpha do have a role in cholesterol homeostasis, but there is still only indirect evidence that oxysterols are the physiological ligands. In this overview we report some recent advancements in our knowledge about the origin and metabolic fate of the quantitatively most important oxysterols occurring in the circulation. In addition, we discuss the possibility that some of these oxysterols may activate liver X receptors and regulate cholesterol homeostasis.  相似文献   
9.
We have previously presented evidence that most of the 24S-hydroxycholesterol present in the circulation originates from the brain and that most of the elimination of this oxysterol occurs in the liver. Plasma 24S-hydroxycholesterol levels decline by a factor of about 5 during the first decades of life. The concentration of the enzyme cholesterol 24S-hydroxylase in the brain is, however, about constant from the first year of life, and reduced enzyme levels thus cannot explain the decreasing plasma levels during infancy. In the present work we tested the hypothesis that the plasma levels of 24S-hydroxycholesterol may reflect the size of the brain relative to the capacity of the liver to eliminate the substance. It is shown here that the age-dependent changes in absolute as well as cholesterol-related plasma level of 24S-hydroxycholesterol closely follow the changes in the ratio between estimated brain weight and estimated liver volume. The size of the brain is increased only about 50% whereas the size of the liver is increased by about 6-fold after the age of 1 year. Liver volume is known to be highly correlated to body surface, and in accordance with this the absolute as well as the cholesterol-related plasma level of 24S-hydroxycholesterol was found to be highly inversely correlated to body surface in 77 healthy subjects of varying ages (r(2) = 0.74). Two chondrodystrophic dwarves with normal size of the brain but with markedly reduced body area had increased levels of 24S-hydroxycholesterol when related to age but normal levels when related to body surface.It is concluded that the balance between cerebral production and hepatic metabolism is a critical determinant for plasma levels of 24S-hydroxycholesterol at different ages and that endocrinological factors are less important. The results are discussed in relation to the possibility to use 24S-hydroxycholesterol in the circulation as a marker for cholesterol homeostasis in the brain.  相似文献   
10.
The hepatic predominating cytochrome P450, CYP3A4, plays an essential role in the detoxification of bile acids and is important in pathological conditions such as cholestasis where CYP3A4 is adaptively up-regulated. However, the mechanism that triggers the up-regulation of CYP3A4 is still not clear. In this study, using recombinant CYP3A4 and human liver microsomes, we demonstrate that CYP3A4 can metabolise lithocholic acid into 3-dehydrolithocholic acid, a potent activator of the nuclear receptors, pregnane X receptor and 1,25-dihydroxy vitamin D3 receptor, which are known to regulate the expression of CYP3A4. This process thus provides a feed-forward metabolism of toxic bile acid that may be of importance in maintaining bile acid homeostasis. We also provide evidence for a novel CYP3A4-mediated metabolic pathway of the secondary bile acid deoxycholic acid. Patients treated with the antiepileptic drug carbamazepine, a CYP3A4 inducer, had markedly elevated urinary excretion of 1beta-hydroxydeoxycholic acid compared to healthy controls. The importance of CYP3A4 in this process was verified by incubations with recombinant CYP3A4 and human liver microsomes, both of which efficiently converted deoxycholic acid into 1beta-hydroxydeoxycholic acid. Interestingly, CYP3A4 was also found to be active against the secondary bile acid ursodeoxycholic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号