首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   8篇
  国内免费   1篇
  2017年   2篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1976年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
When the inner cylinder of a fluid-filled Couette viscometer is rotated rapidly, a vortical flow pattern develops when a dimensionless value referred to as the critical Taylor number (Tc) is reached. We have determined its magnitude in our viscometer for three Newtonian fluids and for blood at 37 degrees C, using the inflection point of torque/RPM vs. RPM (sudden rise in apparent viscosity). Its position was identified by least squares line fitting. Because blood was studied, the viscosity used in Tc calculation was the apparent bob shear stress/shear rate ratio at the inflection marking vortical flow onset. For glycerol-water mixtures Tc was 41.8 +/- 0.3 (N = 11), for propylene glycol 42.0 +/- 0.2 (N = 14), for silicone oil 41.8 +/- 0.2 (N = 11). For healthy blood Tc was 40.7 +/- 0.9 (N = 140). This evidence against blood's increased resistance to flow instability was accompanied by a slower rate of rise in torque both above and below Tc compared to the three Newtonian fluids. Newtonian fluids and blood both developed wavy vortical flow at a rotation rate moderately higher than Tc. Blood resisted this unstable flow behavior more than the Newtonian fluids but it also experienced a slower rate of rise in torque with increasing rotation rate above the critical Taylor number. Shear-thinning is the simplest explanation for blood's mildly altered Taylor vortex behavior; blood's resistance to flow instability is otherwise not found to be sufficient to affect its flow stability in man.  相似文献   
2.
Monoamine oxidase (MAO), an important enzyme for the degradation of amine neurotransmitters, has been implicated in neuropsychiatric illness. The amino acid sequence for one form of the enzyme, MAO-A, has been deduced from human cDNA clones and verified against proteolytic peptides. The covalent binding site for the flavin adenine dinucleotide (FAD) cofactor is near the C-terminal region. The presence of features characteristic of the ADP-binding fold suggests that the N-terminal region is also involved in the binding of FAD. These cDNAs should facilitate the study of the structure, function, and intracellular targeting of MAO, as well as the analysis of its expression in normal and pathological states.  相似文献   
3.
The genes for cellobiose utilization are normally cryptic in Escherichia coli. The cellobiose system was used as a model to understand the process by which silent genes are maintained in microbial populations. Previously reported was (1) the isolation of a mutant strain that expresses the cellobiose-utilization (Cel) genes and (2) that expression of those genes allows utilization of three beta- glucoside sugars: cellobiose, arbutin, and salicin. The Cel gene cluster has now been cloned from that mutant strain. In the course of locating the Cel genes within the cloned DNA segment, it was discovered that inactivation of the Cel-encoded hydrolase rendered the host strain sensitive to all three beta-glucosides as potent inhibitors. This sensitivity arises from the accumulation of the phosphorylated beta- glucosides. Because even the fully active genes conferred some degree of beta-glucoside sensitivity, the effects of cellobiose on a series of five Cel+ mutants of independent origin were investigated. Although each of those strains utilizes cellobiose as a sole carbon and energy source, cellobiose also acts as a potent inhibitor that reduces the growth rate on glycerol 2.5-16.5-fold. On the other hand, wild-type strains that cannot utilize cellobiose are not inhibited. The observation that the same compound can serve either as a nutrient or as an inhibitor suggests that, under most conditions in which cellobiose will be present together with other resources, there is a strong selective advantage to having the cryptic (Cel0) allele. In those environments in which cellobiose is the sole, or the best, resource, mutants that express the genes (Cel+) will have a strong selective advantage. It is suggested that temporal alternation between these two conditions is a major factor in the maintenance of these genes in E. coli populations. This alternation of environments and fitnesses was predicted by the model for cryptic-gene maintenance that was previously published.   相似文献   
4.
Selection-induced mutations are nonrandom mutations that occur as specific and direct responses to environmental challenge. Examples of selection-induced mutations have been reported both in bacteria and in yeast. I previously showed (Hall 1988) that excisions of the mobile genetic element IS150 from within bglF are selection induced and argued that they occurred because they were potentially advantageous under the selective conditions employed. Mittler and Lenski (Mittler and Lenski 1992) have argued that such excisions are not selection induced but that they occur randomly in nondividing cells. Here I provide further evidence that IS150 excisions are induced by selection and that the excisions are immediately, rather than only potentially, advantageous to the cell. I also provide evidence that excisions, which Mittler and Lenski claim occur randomly in saturated broth cultures, actually occur after samples from those cultures are plated onto selective medium.   相似文献   
5.
The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections.  相似文献   
6.
7.
The Endo F2gene was overexpressed in E.coli as a fusion protein joined to the maltose-binding protein. MBP-Endo F2was found in a highly enriched state as insoluble, inactive inclusion bodies. Extraction of the inclusion bodies with 20% acetic acid followed by exhaustive dialysis rendered the fusion protein active and soluble. MBP-Endo F2was digested with Factor Xaand purified on Q-Sepharose. The enzyme was homogeneous by SDS-PAGE, and appeared as a single symmetrical peak on HPLC. Analysis of the amino-terminus demonstrated conclusively that recombinant Endo F2was homogeneous and identical to the native enzyme.   相似文献   
8.
Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.  相似文献   
9.
Individual plants of several Amelanchier taxa contain many polymorphic nucleotide sites in the internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA). This polymorphism is unusual because it is not recent in origin and thus has resisted homogenization by concerted evolution. Amelanchier ITS sequence polymorphism is hypothesized to be the result of gene flow between two major North American clades resolved by phylogenetic analysis of ITS sequences. Western North American species plus A. humilis and A. sanguinea of eastern North America form one clade (A), and the remaining eastern North American Amelanchier make up clade B. Five eastern North American taxa are polymorphic at many of the nucleotide sites where clades A and B have diverged and are thought to be of hybrid origin, with A. humilis or A. sanguinea as one parent and various members of clade B as the other parent. Morphological evidence suggests that A. humilis is one of the parents of one of the polymorphic taxa, a microspecies that we refer to informally as A. "erecta." Sequences of 21 cloned copies of the ITS1- 5.8S gene-ITS2 region from one A. "erecta" individual are identical to A. humilis sequence or to the clade B consensus sequence, or they are apparent recombinants of A. humilis and clade B ITS repeats. Amelanchier "erecta" and another polymorphic taxon are suspected to be relatively old because both grow several hundred kilometers beyond the range of one of their parents. ITS sequence polymorphisms have apparently persisted in these two taxa perhaps because of polyploidy and/or agamospermy (asexual seed production), which are prevalent in the genus.   相似文献   
10.
Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome‐wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative quantification of the changes in the lysine acetylation levels was determined on a proteome‐wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1‐like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar‐localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss‐of‐function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low‐light conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号