全文获取类型
收费全文 | 216篇 |
免费 | 20篇 |
专业分类
236篇 |
出版年
2024年 | 3篇 |
2023年 | 2篇 |
2022年 | 6篇 |
2021年 | 7篇 |
2020年 | 2篇 |
2019年 | 3篇 |
2018年 | 8篇 |
2017年 | 4篇 |
2016年 | 7篇 |
2015年 | 8篇 |
2014年 | 14篇 |
2013年 | 11篇 |
2012年 | 20篇 |
2011年 | 11篇 |
2010年 | 7篇 |
2009年 | 14篇 |
2008年 | 18篇 |
2007年 | 6篇 |
2006年 | 16篇 |
2005年 | 3篇 |
2004年 | 5篇 |
2003年 | 8篇 |
2002年 | 5篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 5篇 |
1998年 | 3篇 |
1997年 | 1篇 |
1996年 | 7篇 |
1994年 | 2篇 |
1993年 | 8篇 |
1992年 | 2篇 |
1991年 | 5篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1985年 | 2篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1972年 | 1篇 |
1962年 | 1篇 |
排序方式: 共有236条查询结果,搜索用时 0 毫秒
1.
Lalitha Ramachandran Kanjoormana Aryan Manu Muthu K. Shanmugam Feng Li Kodappully Sivaraman Siveen Shireen Vali Shweta Kapoor Taher Abbasi Rohit Surana Duane T. Smoot Hassan Ashktorab Patrick Tan Kwang Seok Ahn Chun Wei Yap Alan Prem Kumar Gautam Sethi 《The Journal of biological chemistry》2012,287(45):38028-38040
Gastric cancer (GC) is a lethal malignancy and the second most common cause of cancer-related deaths. Although treatment options such as chemotherapy, radiotherapy, and surgery have led to a decline in the mortality rate due to GC, chemoresistance remains as one of the major causes for poor prognosis and high recurrence rate. In this study, we investigated the potential effects of isorhamnetin (IH), a 3′-O-methylated metabolite of quercetin on the peroxisome proliferator-activated receptor γ (PPAR-γ) signaling cascade using proteomics technology platform, GC cell lines, and xenograft mice model. We observed that IH exerted a strong antiproliferative effect and increased cytotoxicity in combination with chemotherapeutic drugs. IH also inhibited the migratory/invasive properties of GC cells, which could be reversed in the presence of PPAR-γ inhibitor. We found that IH increased PPAR-γ activity and modulated the expression of PPAR-γ regulated genes in GC cells. Also, the increase in PPAR-γ activity was reversed in the presence of PPAR-γ-specific inhibitor and a mutated PPAR-γ dominant negative plasmid, supporting our hypothesis that IH can act as a ligand of PPAR-γ. Using molecular docking analysis, we demonstrate that IH formed interactions with seven polar residues and six nonpolar residues within the ligand-binding pocket of PPAR-γ that are reported to be critical for its activity and could competitively bind to PPAR-γ. IH significantly increased the expression of PPAR-γ in tumor tissues obtained from xenograft model of GC. Overall, our findings clearly indicate that antitumor effects of IH may be mediated through modulation of the PPAR-γ activation pathway in GC. 相似文献
2.
Transesterification of primary and secondary alcohols using Pseudomonas aeruginosa lipase 总被引:1,自引:0,他引:1
Lipases of a newly isolated Pseduomonas aeruginosa MTCC 5113 were assessed for transesterification of benzyl alcohol and vinyl acetate to produce the flavoring agent benzyl acetate. Crude lipase preparations that minimized the cost of the biocatalyst, achieved benzyl alcohol conversion of 89% within 3h at 30 degrees C. In contrast, purified and expensive commercially available lipases of Candida antarctica and porcine pancreas achieved much lower conversions at 80% and 15%, respectively. A well-mixed ( approximately 800 rev.min(-1)) batch reactor having the aqueous phase finely dispersed in heptane was used in these studies. Benzyl alcohol conversion was maximal when the enzyme-containing aqueous phase constituted about 50% of the total reactor volume. Use of solvents such as hexane, benzene, toluene and dimethyl sulfoxide reduced conversion compared with the use of heptane. 相似文献
3.
Debabrata Tripathy Alka Choudhary Uttam Chand Banerjee Inder Pal Singh Anupam Chatterjee 《PloS one》2015,10(8)
Potentilla fulgens root traditionally used as a folk remedy in Meghalaya, India. However, systematic evaluation of its anticancer efficacy was limited. We investigated the anticancer potentials of the various extracts prepared by partitioning of the methanol extract of the root with the aim to discover major contributing factors from the most effective fractions. Methanol extract of P. fulgens roots (PRE) was prepared by maceration which was subsequently fractionated into hexane, ethyl-acetate (EA) and n-butanol soluble fractions. Various assays (clonogenic assay, Flow cytometry analysis, western blot, semiquantitative RT-PCR and the level of endogenous glutathione) were used to evaluate different parameters, such as Cell survivability, PARP-1 proteolysis, expression pattern of anti-apoptotic and γ-glutamyl-cysteine synthetase heavy subunit (GCSC) genes in both MCF-7 and U87 cancer cell lines. Since the EA-fraction showed most efficient growth inhibitory effect, it was further purified and a total of nine compounds and some monomeric and dimeric flavan-3-ols were identified and characterized. Three compounds viz., epicatechin (EC), gallic acid (GA) and ursolic acid (UA) were taken on the basis of their higher yield and 10 μg/ml of each was mixed together. The concentration used in this study for PRE, EA- and Hex-fraction was 100 μg/ml, which was higher than the IC50 value. Apoptotic cell death in the PRE, EA-fraction and EC+GA+UA treated cancer cell cultures was significantly greater than in normal cells due to suppression of anti-apoptotic protein Bcl2 following treatment. Depletion of glutathione by downregulating GCSC was also observed. Induction of apoptosis and lowering the level of glutathione are considered to be positive activity for an anticancer agent. Therefore, modulation of GSH concentration in tumor cells by PRE and its EA-fraction opened up the possibility of a new therapeutic approach because these plant products are not harmful to normal cells and may regulate the tumor cellular response to different anticancer treatments. Thus, it would be interesting to examine efficacy of these plant products or EA-fraction in human cancer treatment. 相似文献
4.
Alam A Haldar S Thulasiram HV Kumar R Goyal M Iqbal MS Pal C Dey S Bindu S Sarkar S Pal U Maiti NC Bandyopadhyay U 《The Journal of biological chemistry》2012,287(29):24844-24861
Macrophage migration inhibitory factor (MIF) is responsible for proinflammatory reactions in various infectious and non-infectious diseases. We have investigated the mechanism of anti-inflammatory activity of epoxyazadiradione, a limonoid purified from neem (Azadirachta indica) fruits, against MIF. Epoxyazadiradione inhibited the tautomerase activity of MIF of both human (huMIF) and malaria parasites (Plasmodium falciparum (PfMIF) and Plasmodium yoelii (PyMIF)) non-competitively in a reversible fashion (K(i), 2.11-5.23 μm). Epoxyazadiradione also significantly inhibited MIF (huMIF, PyMIF, and PfMIF)-mediated proinflammatory activities in RAW 264.7 cells. It prevented MIF-induced macrophage chemotactic migration, NF-κB translocation to the nucleus, up-regulation of inducible nitric-oxide synthase, and nitric oxide production in RAW 264.7 cells. Epoxyazadiradione not only exhibited anti-inflammatory activity in vitro but also in vivo. We tested the anti-inflammatory activity of epoxyazadiradione in vivo after co-administering LPS and MIF in mice to mimic the disease state of sepsis or bacterial infection. Epoxyazadiradione prevented the release of proinflammatory cytokines such as IL-1α, IL-1β, IL-6, and TNF-α when LPS and PyMIF were co-administered to BALB/c mice. The molecular basis of interaction of epoxyazadiradione with MIFs was explored with the help of computational chemistry tools and a biological knowledgebase. Docking simulation indicated that the binding was highly specific and allosteric in nature. The well known MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) inhibited huMIF but not MIF of parasitic origin. In contrast, epoxyazadiradione inhibited both huMIF and plasmodial MIF, thus bearing an immense therapeutic potential against proinflammatory reactions induced by MIF of both malaria parasites and human. 相似文献
5.
Parag Surana Ranabir Das 《Protein science : a publication of the Protein Society》2016,25(8):1438-1450
The study of intermediates in the protein folding pathway provides a wealth of information about the energy landscape. The intermediates also frequently initiate pathogenic fibril formations. While observing the intermediates is difficult due to their transient nature, extreme conditions can partially unfold the proteins and provide a glimpse of the intermediate states. Here, we observe the high resolution structure of a hydrophobic core mutant of Ubiquitin at an extreme acidic pH by nuclear magnetic resonance (NMR) spectroscopy. In the structure, the native secondary and tertiary structure is conserved for a major part of the protein. However, a long loop between the beta strands β3 and β5 is partially unfolded. The altered structure is supported by fluorescence data and the difference in free energies between the native state and the intermediate is reflected in the denaturant induced melting curves. The unfolded region includes amino acids that are critical for interaction with cofactors as well as for assembly of poly‐Ubiquitin chains. The structure at acidic pH resembles a late folding intermediate of Ubiquitin and indicates that upon stabilization of the protein's core, the long loop converges on the core in the final step of the folding process. 相似文献
6.
Samuel H. K. Ho Uttam Das Gupta John S. Rieske 《Journal of bioenergetics and biomembranes》1985,17(5):269-282
Deformamidoazidoantimycin A (DAA), a photoactive derivative of antimycin A containing an azido group substituting for the formamido group attached to the phenyl ring, was synthesized. The ultraviolet spectrum of DAA was almost identical to that of antimycin A, indicating little alteration of the electronic structure of the substituted phenyl ring by the azido substitution. However, the inhibitory effectiveness of DAA toward ubiquinol-cytochromec reductase (Complex III) purified from bovine heart (K
i
=ca. 0.5 µM) was considerably less than that of antimycin (K
i
3 pM), indicating a direct rather than a supporting role of the formamido group in the inhibitory activity of antimycin. Exposure of purified Complex III to [3H]DAA plus ultraviolet light caused a major labeling by tritium of SDS-PAGE band 7 (m=13 kDa by SDS-PAGE) and lesser but significant labeling of bands 3, 6, 8, and 9. Pretreatment of Complex III with antimycin greatly suppressed the labeling of bands 5, 6, and 7 but caused an apparent increased labeling of bands 8 and 9 by [3H]DAA, respectively. The labeling of band 7 by [3H]DAA also was strongly suppressed by reduction of Complex III by either sodium borohybride or ascorbate. Based on magnitude of labeling by [3H]DAA and the degree of suppression of labeling by antimycin, the protein of band 7 qualified as the principal component for specific binding of antimycin with the protein of band 6 (m=16 kDa) showing a lesser but significant amount of specific binding. 相似文献
7.
I Matsumura J B Wallingford N K Surana P D Vize A D Ellington 《Nature biotechnology》1999,17(7):696-701
The use of the Escherichia coli enzyme beta-glucuronidase (GUS) as a reporter in gene expression studies is limited due to loss of activity during tissue fixation by glutaraldehyde or formaldehyde. We have directed the evolution of a GUS variant that is significantly more resistant to both glutaraldehyde and formaldehyde than the wild-type enzyme. A variant with eight amino acid changes was isolated after three rounds of mutation, DNA shuffling, and screening. Surprisingly, although glutaraldehyde is known to modify and cross-link free amines, only one lysine residue was mutated. Instead, amino acid changes generally occurred near conserved lysines, implying that the surface chemistry of the enzyme was selected to either accept or avoid glutaraldehyde modifications that would normally have inhibited function. We have shown that the GUS variant can be used to trace cell lineages in Xenopus embryos under standard fixation conditions, allowing double staining when used in conjunction with other reporters. 相似文献
8.
Fungal fermentation is very complex in nature due to its nonlinear relationship with the time, especially in batch culture. Growth and production of carbonyl reductase by Geotrichum candidum NCIM 980 have been studied in a laboratory scale stirred tank bioreactor at different pH (uncontrolled and controlled), agitation, aeration and dissolved oxygen concentration. The yield of the process has been calculated in terms of glucose consumed. Initial studies showed that fermenter grown cells have more than 15 times higher activity than that of the shake flask grown cells. The medium pH was found to have unspecific but significant influence on the enzyme productivity. However, at controlled pH 5.5 the specific enzyme activity was highest (306U/mg). Higher agitation had detrimental effect on the cell mass production. Dissolved oxygen concentration was maintained by automatic control of the agitation speed at an aeration rate of 0.6 volume per volume per minute (vvm). Optimization of glucose concentration yielded 21g/l cell mass with and 9.77x10(3)U carbonyl reductase activity/g glucose. Adaptation of different strategies for glucose feeding in the fermenter broth was helpful in increasing the process yield. Feeding of glucose at a continuous rate after 3h of cultivation yielded 0.97g cell mass/g glucose corresponding to 29.1g/l cell mass. Volumetric oxygen transfer coefficient (K(L)a) increased with the increasing of agitation rate. 相似文献
9.
Catalase plays a major role in the protection of tissues from toxic effects of H2O2 and partially reduced oxygen species. In the present study catalase was extracted and purified 330-fold from goat lung by acetone fractionation and successive chromatographies on DEAE-cellulose, Sephadex G-200, Blue Sepharose CL-6B and Ultrogel AcA-34. The purified enzyme was almost homogeneous as judged by polyacrylamide gel electrophoresis and FPLC. The molecular weight and Stokes' radius of the purified enzyme were 339 kDa and 127±2 Å. The enzyme had 11 sulfhydryl groups and 15 tryptophan groups per mol of the enzyme. A broad pH optimum in the range 5.2 to 7.8 was obtained. Sulfhydryl group binding agents, thiol reagents and N-Bromosuccinimide inhibited the enzyme activity. The kinetic data show no cooperativity between the substrate binding sites. Tryptophan, indole acetic acid, cysteine, formaldehyde and sodium azide inhibited the enzyme non-competitively with Ki values of 1.5, 1.6, 6.7, 0.55 and 0.0017 mM, respectively. 相似文献
10.
DNA barcode is a new tool for taxon recognition and classification of biological organisms based on sequence of a fragment of mitochondrial gene, cytochrome c oxidase I (COI). In view of the growing importance of the fish DNA barcoding for species identification, molecular taxonomy and fish diversity conservation, we developed a Fish Barcode Information System (FBIS) for Indian fishes, which will serve as a regional DNA barcode archival and analysis system. The database presently contains 2334 sequence records of COI gene for 472 aquatic species belonging to 39 orders and 136 families, collected from available published data sources. Additionally, it contains information on phenotype, distribution and IUCN Red List status of fishes. The web version of FBIS was designed using MySQL, Perl and PHP under Linux operating platform to (a) store and manage the acquisition (b) analyze and explore DNA barcode records (c) identify species and estimate genetic divergence. FBIS has also been integrated with appropriate tools for retrieving and viewing information about the database statistics and taxonomy. It is expected that FBIS would be useful as a potent information system in fish molecular taxonomy, phylogeny and genomics. AVAILABILITY: The database is available for free at http://mail.nbfgr.res.in/fbis/ 相似文献