首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   5篇
  国内免费   17篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   8篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   7篇
  2011年   7篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2004年   2篇
  1993年   1篇
排序方式: 共有65条查询结果,搜索用时 375 毫秒
1.
别藻蓝蛋白藻蓝胆素发色团分子构象研究   总被引:1,自引:0,他引:1  
主要研究了蓝绿藻污棕席藻(Phormidium luridum)别藻蓝蛋白在不同 pH值条件下的吸收光谱和共振拉曼光谱.发现低聚化的结果导致了三聚体别藻蓝蛋白 650nm 特征吸收峰的消失和一些共振拉曼带强度和位置的移动.结果表明在低 pH 值作用下的低聚化的别藻蓝蛋白中藻蓝胆素发色团分子的构象和自由胆素分子类似,比三聚体的别藻蓝蛋白的发色团分子更趋于卷曲,折叠的构象态.而三聚体的别藻蓝蛋白,主要的拉曼带 1645cm-1是其发色团分子构象处于更线性延展的标志,其光谱行为和吸收光谱 Avis/Auv所表征的发色团分子构象的结果相一致.  相似文献   
2.
Zea mays (Z. mays) is one of the main cereal crops in the world, and it′s by-products have exhibited medicinal properties to explore. This article intends to review the chemical compositions and pharmacological activities of by-products of Z. mays (corn silks, roots, bract, stems, bran, and leaves) which support the therapeutic potential in the treatment of different diseases, with emphasis on the natural occurring compounds and detailed pharmacological developments. Based on this review, 231 natural compounds are presented. Among them, flavonoids, terpenes, phenylpropanoids, and alkaloids are the most frequently reported. The by-products of Z. mays possess diuretic effects, hepatoprotective, anti-diabetic, antioxidant, neuroprotective, anti-inflammatory, anti-cancer, plant protection activity, and other activities. This article reviewed the phytochemistry and pharmacological activities of Z. mays for comprehensive quality control and the safety and effectiveness to enhance future application.  相似文献   
3.
4.
Ag nanoparticles (NPs) were loaded onto the surface of phenol formaldehyde resin (PFR) NPs without any reducing agent. The as‐synthesized PFR@Ag composites have low cytotoxicity, which makes them promising antibacterial agents. Furthermore, the good fluorescence of PFR could be used for cell imaging. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
Chen Y  Su C  Ke M  Jin X  Xu L  Zhang Z  Wu A  Sun Y  Yang Z  Tien P  Ahola T  Liang Y  Liu X  Guo D 《PLoS pathogens》2011,7(10):e1002294
The 5'-cap structure is a distinct feature of eukaryotic mRNAs, and eukaryotic viruses generally modify the 5'-end of viral RNAs to mimic cellular mRNA structure, which is important for RNA stability, protein translation and viral immune escape. SARS coronavirus (SARS-CoV) encodes two S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTase) which sequentially methylate the RNA cap at guanosine-N7 and ribose 2'-O positions, catalyzed by nsp14 N7-MTase and nsp16 2'-O-MTase, respectively. A unique feature for SARS-CoV is that nsp16 requires non-structural protein nsp10 as a stimulatory factor to execute its MTase activity. Here we report the biochemical characterization of SARS-CoV 2'-O-MTase and the crystal structure of nsp16/nsp10 complex bound with methyl donor SAM. We found that SARS-CoV nsp16 MTase methylated m7GpppA-RNA but not m7GpppG-RNA, which is in contrast with nsp14 MTase that functions in a sequence-independent manner. We demonstrated that nsp10 is required for nsp16 to bind both m7GpppA-RNA substrate and SAM cofactor. Structural analysis revealed that nsp16 possesses the canonical scaffold of MTase and associates with nsp10 at 1∶1 ratio. The structure of the nsp16/nsp10 interaction interface shows that nsp10 may stabilize the SAM-binding pocket and extend the substrate RNA-binding groove of nsp16, consistent with the findings in biochemical assays. These results suggest that nsp16/nsp10 interface may represent a better drug target than the viral MTase active site for developing highly specific anti-coronavirus drugs.  相似文献   
6.
Vineyards harbour a wide variety of microorganisms that play a pivotal role in pre- and post-harvest grape quality and will contribute significantly to the final aromatic properties of wine. The aim of the current study was to investigate the spatial distribution of microbial communities within and between individual vineyard management units. For the first time in such a study, we applied the Theory of Sampling (TOS) to sample gapes from adjacent and well established commercial vineyards within the same terroir unit and from several sampling points within each individual vineyard. Cultivation-based and molecular data sets were generated to capture the spatial heterogeneity in microbial populations within and between vineyards and analysed with novel mixed-model networks, which combine sample correlations and microbial community distribution probabilities. The data demonstrate that farming systems have a significant impact on fungal diversity but more importantly that there is significant species heterogeneity between samples in the same vineyard. Cultivation-based methods confirmed that while the same oxidative yeast species dominated in all vineyards, the least treated vineyard displayed significantly higher species richness, including many yeasts with biocontrol potential. The cultivatable yeast population was not fully representative of the more complex populations seen with molecular methods, and only the molecular data allowed discrimination amongst farming practices with multivariate and network analysis methods. Importantly, yeast species distribution is subject to significant intra-vineyard spatial fluctuations and the frequently reported heterogeneity of tank samples of grapes harvested from single vineyards at the same stage of ripeness might therefore, at least in part, be due to the differing microbiota in different sections of the vineyard.  相似文献   
7.
The human proton-coupled folate transporter (HsPCFT, SLC46A1) mediates intestinal absorption of folates and transport of folates into the liver, brain and other tissues. On Western blot, HsPCFT migrates as a broad band (~55 kDa), higher than predicted (~50 kDa) in cell lines. Western blot analysis required that membrane preparations not be incubated in the loading buffer above 50 degrees C to avoid aggregation of the protein. Treatment of membrane fractions from HsPCFT-transfected HeLa cells with peptidyl N-glycanase F, or cells with tunicamycin, resulted in conversion to a ~35 kDa species. Substitution of asparagine residues of two canonical glycosylation sites to glutamine, individually, yielded a ~47 kDa protein; substitution of both sites gave a smaller (~35 kDa) protein. Single mutants retained full transport activity; the double mutant retained a majority of activity. Transport function and molecular size were unchanged when the double mutant was hemagglutinin (HA) tagged at either the NH(2) or COOH terminus and probed with an anti-HA antibody excluding degradation of the deglycosylated protein. Wild-type or deglycosylated HsPCFT HA, tagged at amino or carboxyl termini, could only be visualized on the plasma membrane when HeLa cells were first permeabilized, consistent with the intracellular location of these domains.  相似文献   
8.
对合成气厌氧发酵生物反应器的研究进展进行综述,包括生物反应器操作原理、类型、构造、应用和对发酵过程的影响等,并对其未来的发展作出展望。  相似文献   
9.
玉米秸秆分批补料获得高还原糖浓度酶解液的条件优化   总被引:2,自引:1,他引:2  
木质纤维素高浓度还原糖水解液的获得是纤维乙醇产业化发展的方向。在发酵工业领域,分批补料法是实现这一目标的重要研究途径。本研究采用分批补料法对获得高浓度玉米秸秆酶解还原糖的条件进行了优化。以稀硫酸预处理的玉米秸秆为原料,考察了液固比、补加量与补加时间对分批补料糖化的影响。结果表明,秸秆高浓度酶解液条件的初始物料为20% (重量/体积),木聚糖酶220 U/g (底物),纤维素酶6 FPU/g (底物),果胶酶50 U/g (底物),在24 h、48 h后分批补加8%预处理后的物料,同时添加与补料量相应的木聚糖酶20 U/g (底物),纤维素酶2 FPU/g (底物),72 h后,最终糖化结果与非补料法相比,还原糖浓度从48.5 g/L提高到138.5 g/L,原料的酶解率最终达到理论值的62.5%。试验结果表明补料法可以显著提高秸秆水解液还原糖浓度。  相似文献   
10.
Chemical modulation of cell fates has been widely used to promote tissue and organ regeneration. Small molecules can target the self-renewal, expansion, differentiation, and survival of endogenous stem cells for enhancing their regenerative power or induce dedifferentiation or transdifferentiation of mature cells into proliferative progenitors or specialized cell types needed for regeneration. Here, we discuss current progress and potential using small molecules to promote in vivo regenerative processes by regulating the cell fate. Current studies of small molecules in regeneration will provide insights into developing safe and efficient chemical approaches for in situ tissue repair and regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号