首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有15条查询结果,搜索用时 0 毫秒
1.
On a global basis, peatlands are a major reserve of carbon (C). Hydrological changes can affect the decomposition processes in peatlands and in turn can alter their C balance. Since 1959, a groundwater extraction plant has generated a water-level gradient at our study site that has gradually changed part of the wet fen into a dry peatland forest. The average water-level drawdown of the gradient (from a pristine 9 cm to 26 cm in the dry end) is close to an estimate predicted by an increase in mean global temperature of 3°C. We studied the total microbial community of the aerobic surface peat in four locations along the gradient through phospholipid fatty acid and PCR-DGGE methods. Additionally, field measurements of soil respiration showed a threefold increase in the C-emission rate at the driest location compared with the wettest one, indicating enhanced decomposition. Also, both fungal and bacterial biomass increased in the drier locations. At the species level, the fungal community changed due to water-level drawdown whereas actinobacteria were less sensitive to drying. The majority of fungal sequences were similar to ectomycorrhizal (ECM) fungi, which dominated throughout the gradient. Our results indicate that ECM fungi might act as important facultative decomposers in organic-rich environments such as peatlands.  相似文献   
2.
The novel metal-organic polymer [Zn(μ-pmdt)(H2O)]n (1) (pmdt = pyrimidine-4,6-dionate) exhibits an extended three-dimensional network with two crystallographically independent pmdt bridging ligands, one zinc(II) atom and a coordinated water molecule. The Zn(II) atoms are located at the centre of a distorted ZnN2OOw tetrahedral chromophore. One of the pmdt ligands acts as tetradentate bridge linking four metal centers, while the other pmdt ligand shows a bidentate coordination mode bridging two metal centers. The compound shows a reversible dehydration process, involving a coordinated water molecule, to lead an amorphous anhydrous phase. This transition has been characterized by thermogravimetric and variable-temperature X-ray powder diffraction techniques.  相似文献   
3.
The aim of this study was to evaluate whether iron, like copper, could support Vitamin C mediated hydroxyl radical formation in bicarbonate-rich water. By using the hydroxyl radical indicator coumarin-3-carboxylic acid, we found that iron, in contrast to copper, was not capable to support Vitamin C induced hydroxyl radical formation. However, when 0.2 mg/l iron and 0.1 mg/l copper were both added to bicarbonate supplemented Milli-Q water, the Vitamin C induced formation of 7-hydroxycoumarin, as measured by HPLC analysis, was inhibited by 47.5%. The inhibition of hydroxyl radical formation by iron was also evident in the experiments performed on copper contaminated bicarbonate-rich household drinking water samples. In the presence of 0.2 mg/l of ferric iron the ascorbic acid induced hydroxyl radical formation was inhibited by 36.0-44.6%. This inhibition was even more significant, 47.0-59.2%, when 0.8 mg/l of ferric iron was present. None of the other redox-active metals, e.g. manganese, nickel or cobalt, could support ascorbic acid induced hydroxyl radical formation and did not have any impact on the ascorbic acid/copper-induced hydroxyl radical generation. Our results show, that iron cannot by itself produce hydroxyl radicals in bicarbonate rich water but can significantly reduce Vitamin C/copper-induced hydroxyl radical formation. These findings might partly explain the mechanism for the iron-induced protective effect on various copper related degenerative disorders that earlier has been observed in animal model systems.  相似文献   
4.
ClpB is a hexameric chaperone that solubilizes and reactivates protein aggregates in cooperation with the Hsp70/DnaK chaperone system. Each of the identical protein monomers contains two nucleotide binding domains (NBD), whose ATPase activity must be coupled to exert on the substrate the mechanical work required for its reactivation. However, how communication between these sites occurs is at present poorly understood. We have studied herein the affinity of each of the NBDs for nucleotides in WT ClpB and protein variants in which one or both sites are mutated to selectively impair nucleotide binding or hydrolysis. Our data show that the affinity of NBD2 for nucleotides (K(d) = 3-7 μm) is significantly higher than that of NBD1. Interestingly, the affinity of NBD1 depends on nucleotide binding to NBD2. Binding of ATP, but not ADP, to NBD2 increases the affinity of NBD1 (the K(d) decreases from ≈160-300 to 50-60 μm) for the corresponding nucleotide. Moreover, filling of the NBD2 ring with ATP allows the cooperative binding of this nucleotide and substrates to the NBD1 ring. Data also suggest that a minimum of four subunits cooperate to bind and reactivate two different aggregated protein substrates.  相似文献   
5.
African Pygmies are hunter-gatherer populations from the equatorial rainforest that present the lowest height averages among humans. The biological basis and the putative adaptive role of the short stature of Pygmy populations has been one of the most intriguing topics for human biologists in the last century, which still remains elusive. Worldwide convergent evolution of the Pygmy size suggests the presence of strong selective pressures on the phenotype. We developed a novel approach to survey the genetic architecture of phenotypes and applied it to study the genomic covariation between allele frequencies and height measurements among Pygmy and non-Pygmy populations. Among the regions that were most associated with the phenotype, we identified a significant excess of genes with pivotal roles in bone homeostasis, such as PPPT3B and the height associated SUPT3H-RUNX2. We hypothesize that skeletal remodeling could be a key biological process underlying the Pygmy phenotype. In addition, we showed that these regions have most likely evolved under positive selection. These results constitute the first genetic hint of adaptive evolution in the African Pygmy phenotype, which is consistent with the independent emergence of the Pygmy height in other continents with similar environments.  相似文献   
6.
The aim of this study was to evaluate whether iron, like copper, could support Vitamin C mediated hydroxyl radical formation in bicarbonate-rich water. By using the hydroxyl radical indicator coumarin-3-carboxylic acid, we found that iron, in contrast to copper, was not capable to support Vitamin C induced hydroxyl radical formation. However, when 0.2?mg/l iron and 0.1?mg/l copper were both added to bicarbonate supplemented Milli-Q water, the Vitamin C induced formation of 7-hydroxycoumarin, as measured by HPLC analysis, was inhibited by 47.5%. The inhibition of hydroxyl radical formation by iron was also evident in the experiments performed on copper contaminated bicarbonate-rich household drinking water samples. In the presence of 0.2?mg/l of ferric iron the ascorbic acid induced hydroxyl radical formation was inhibited by 36.0–44.6%. This inhibition was even more significant, 47.0–59.2%, when 0.8?mg/l of ferric iron was present. None of the other redox-active metals, e.g. manganese, nickel or cobalt, could support ascorbic acid induced hydroxyl radical formation and did not have any impact on the ascorbic acid/copper-induced hydroxyl radical generation. Our results show, that iron cannot by itself produce hydroxyl radicals in bicarbonate rich water but can significantly reduce Vitamin C/copper-induced hydroxyl radical formation. These findings might partly explain the mechanism for the iron-induced protective effect on various copper related degenerative disorders that earlier has been observed in animal model systems.  相似文献   
7.
ClpB is a hexameric molecular chaperone that, together with the DnaK system, has the ability to disaggregate stress-denatured proteins. The hexamer is a highly dynamic complex, able to reshuffle subunits. To further characterize the biological implications of the ClpB oligomerization state, the association equilibrium of the wild-type (wt) protein and of two deletion mutants, which lack part or the whole M domain, was quantitatively analyzed under different experimental conditions, using several biophysical [analytical ultracentrifugation, composition-gradient (CG) static light scattering, and circular dichroism] and biochemical (ATPase and chaperone activity) methods. We have found that (i) ClpB self-associates from monomers to form hexamers and higher-order oligomers that have been tentatively assigned to dodecamers, (ii) oligomer dissociation is not accompanied by modifications of the protein secondary structure, (iii) the M domain is engaged in intersubunit interactions that stabilize the protein hexamer, and (iv) the nucleotide-induced rearrangement of ClpB affects the protein oligomeric core, in addition to the proposed radial extension of the M domain. The difference in the stability of the ATP- and ADP-bound states [ΔΔG(ATP-ADP) = -10 kJ/mol] might explain how nucleotide exchange promotes the conformational change of the protein particle that drives its functional cycle.  相似文献   
8.
9.
ClpB is a member of the AAA+ superfamily that forms a ring-shaped homohexamer. Each protomer contains two nucleotide binding domains arranged in two rings that hydrolyze ATP. We extend here previous studies on ClpB nucleotide utilization requirements by using an experimental approach that maximizes random incorporation of different subunits into the protein hexamer. Incorporation of one subunit unable to bind or hydrolyze ATP knocks down the chaperone activity, while the wt hexamer can accommodate two mutant subunits that hydrolyze ATP in only one protein ring. Four subunits seem to build the functional cooperative unit, provided that one of the protein rings contains active nucleotide binding sites.  相似文献   
10.
Drosophila S2 cells plated on a coverslip in the presence of any actin-depolymerizing drug form long unbranched processes filled with uniformly polarized microtubules. Organelles move along these processes by microtubule motors. Easy maintenance, high sensitivity to RNAi-mediated protein knock-down and efficient procedure for creating stable cell lines make Drosophila S2 cells an ideal model system to study cargo transport by live imaging. The results obtained with S2 cells can be further applied to a more physiologically relevant system: axonal transport in primary neurons cultured from dissociated Drosophila embryos. Cultured neurons grow long neurites filled with bundled microtubules, very similar to S2 processes. Like in S2 cells, organelles in cultured neurons can be visualized by either organelle-specific fluorescent dyes or by using fluorescent organelle markers encoded by DNA injected into early embryos or expressed in transgenic flies. Therefore, organelle transport can be easily recorded in neurons cultured on glass coverslips using living imaging. Here we describe procedures for culturing and visualizing cargo transport in Drosophila S2 cells and primary neurons. We believe that these protocols make both systems accessible for labs studying cargo transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号