首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  17篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   6篇
  2002年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
A bioconjugate of Pseudomonas cepacia lipase with alginate was prepared by simple adsorption. Atomic force microscope (AFM) images showed that this bioconjugate resulted from adsorption rather than entrapment of the enzyme as enzyme molecules were visible on the gel surface. The soluble bioconjugate exhibited increased enzyme activity in terms of high effectiveness factor (effectiveness factor was 3 for the immobilized preparation) and greater Vmax/Km value (Vmax/Km increased 25 times upon immobilization). This constitutes one of the less frequently observed instances of lipase activation by lid opening as a result of binding to a predominantly hydrophilic molecule. The bioconjugate was also more stable at 55 degrees C as compared to the free enzyme and could be reused for oil hydrolysis up to 4 cycles without any loss in activity. Fluorescence emission spectroscopy showed that the immobilized enzyme had undergone definite conformational changes.  相似文献   
2.
There is an ongoing concern regarding the biocompatibility of nanoparticles with sizes less than 100 nm as compared to larger particles of the same nominal substance. In this study, we investigated the toxic properties of magnetite stabilized with polyacrylate sodium. The magnetite was characterized by X-ray powder diffraction analysis, and the mean particle diameter was calculated using the Scherrer formula and was found to be 9.3 nm. In this study, we treated lung epithelial cells with different concentrations of magnetite and investigated their effects on oxidative stress and cell proliferation. Our data showed an inhibition of cell proliferation in magnetite-treated cells with a significant dose-dependent activation and induction of reactive oxygen species. Also, we observed a depletion of antioxidants, glutathione, and superoxide dismutase, respectively, as compared with control cells. In addition, apoptotic-related protease/enzyme such as caspase-3 and -8 activities, were increased in a dose-dependent manner with corresponding increased levels of DNA fragmentation in magnetite-treated cells compared to than control cells. Together, the present study reveals that magnetite exposure induces oxidative stress and depletes antioxidant levels in the cells to stimulate apoptotic pathway for cell death.  相似文献   
3.
Background and objective Angiotensin II type 1 receptor (AT1R) blockade reduces vascular oxidative stress but whether myocardial oxidative stress represents a mechanism for the beneficial effect of AT1R blockade in heart failure is unclear. Furthermore, the impact of AT1R blockade on the expression of angiotensin II receptors in heart failure has not been well documented. Accordingly, we examined the impact of the AT1R blocker candesartan on hemodynamics, left ventricular (LV) remodeling (echocardiography), oxidative stress, and tissue expression of AT1Rs and angiotensin II type 2 receptors (AT2Rs) in a canine model of pacing-induced heart failure. Methods and results Animals were randomized to rapid right ventricular-pacing (250 beats/min for 3 weeks) to severe heart failure and treated with candesartan (10 mg/kg daily, n = 8) or placebo (n = 8) from day 3 onwards, or no pacing (sham, n = 7). Candesartan significantly reduced mean pulmonary arterial and LV diastolic pressure, LV end-diastolic and end-systolic volume and ascites, increased cardiac output, dP/dt, and ejection fraction, while reversing the marked increase in aldehydes, a marker of oxidative stress, observed in the placebo group. Although candesartan did not alter LV AT1R protein expression compared to placebo or sham, it reversed the decrease in AT2R protein observed in the placebo group. Conclusion Our results indicate that in the pacing model of heart failure, chronic AT1R blockade attenuates hemodynamic deterioration and limits LV remodeling and dysfunction, in part by reversing oxidative stress and AT2R downregulation.  相似文献   
4.
Persistent left ventricular (LV) dysfunction after reperfused myocardial infarction (RMI) is a significant problem and angiotensin II (AngII) type 1 receptor (AT1R) blockers (ARBs) may limit reperfusion injury involving upregulation of AngII type 2 receptors (AT2R). To determine whether ARBs valsartan and irbesartan limit reperfusion injury and upregulate AT2R protein during RMI, we randomized dogs with anterior RMI (90 min ischemia; 120 min reperfusion) to 4 groups [valsartan (n = 6); irbesartan (n = 9); vehicle controls (n = 8); and sham (n = 6)] and measured serial in vivo hemodynamics, LV systolic and diastolic function, and inhibition of AngII pressor responses to the ARBs, and ex vivo infarct size, and regional AT1R and AT2R protein expression at the end of the reperfusion. Compared to the control group, both ARBs significantly limited the increase in left atrial pressure, promptly limited the deterioration of LV dP/dtmax, dP/dtmin, ejection fraction and diastolic function, limited infarct expansion and thinning, and limited infarct size. Importantly, both ARBs increased AT2R protein in the postischemic reperfused zone, with no change in AT1R protein. There were no changes in the sham group. The results suggest that limitation of myocardial injury associated with AT1R blockade combined with upregulation of AT2R protein expression contributes to the cardioprotective effects of ARBs during RMI. This beneficial effect of ARBs on persistent LV dysfunction after RMI should be evaluated in the clinical setting to determine the relative benefit of ARBs in patients who undergo reperfusion therapy for acute coronary syndromes.  相似文献   
5.
Sawicki G  Jugdutt BI 《Proteomics》2007,7(12):2100-2110
To determine whether reperfused myocardial infarction (RMI) induces PTM of the delta-subunit of the mitochondrial metabolic enzyme ATP synthase (ATP/delta) in the ischemic zone (IZ) and whether this can be reversed by the angiotensin II type 1 receptor (AT(1)R) blocker valsartan, we applied a pharmaco-proteomics approach in canine RMI hearts with or without valsartan pretreatment. Using the 2-DE technique, we identified differential regional expression of ATP/delta in the IZ compared to the non-ischemic zone (NIZ), with an approximately 2-fold increase in the IZ that was normalized by valsartan. Furthermore in the IZ, RMI triggered S-nitrosylation of cysteine-100, nitration of the two tyrosines 88 and 225, and hydroxylation of lysine-182 in ATP/delta followed by its myristoylation. Importantly, valsartan abolished these modifications of ATP/delta in the IZ, triggered phosphorylation of serine-76 in both the IZ and NIZ, and decreased necrosis, apoptosis, left ventricular dysfunction and remodeling. Thus, AT(1)R-blocker-induced cardioprotection during RMI is associated with phosphorylation of ATP/delta and inhibition of nitric oxide-related chemical modifications such as S-nitrosylation, nitration and hydroxylation. Targeting specific PTMs during RMI, such as those of ATP/delta with AT(1)R blockade, might be a potentially powerful novel therapeutic approach. However, the identification of S-nitrosylation was putative and requires MS/MS verification.  相似文献   
6.
The rational design of therapeutic interventions for protection of ischemic myocardium from ultimate death requires an understanding of the mechanistic basis of cardiomyocyte (CM) cell death, its timing and the tools for its quantification. Until recently, CM cell death following ischemia and/or reperfusion was considered to involve necrosis or accidental cell death from very early on. Collective evidence over the past decade indicates that early CM cell death after myocardial ischemia and post-ischemic reperfusion involves apoptosis with cell shrinkage and drop-out, and/or oncosis with cell swelling followed by necrosis. This paradigm shift suggests that different approaches for cardioprotection are required. Oncologists, pathologists, anatomists and basic scientists who have studied apoptosis over the last three decades separated physiological apoptosis from inappropriate apoptosis in pathological states. Until recently, cardiologists resisted the concepts of CM apoptosis and regeneration. Cumulative evidence indicating that apoptosis in the heart may occur in different cell types, spread from one cell type to another, and occur in bursts, may have profound implications for therapies aimed at protection of ischemic myocardium by targeting CM apoptosis in acute coronary syndromes. This review focuses on a critique of the methods used for the assessment of CM apoptosis and the implications of CM apoptosis in acute coronary syndromes. (Mol Cell Biochem 270: 177–200, 2005)  相似文献   
7.
We assessed whether upregulation of the angiotensin II (AngII) type 2 receptor (AT2R) during AngII type 1 receptor (AT1R) blockade might induce apoptosis in the in vivo rat model of reperfused myocardial infarction (RMI) and whether addition of an AT2R blocker abolishes that effect. We measured in vivo hemodynamics and left ventricular (LV) systolic and diastolic function (echocardiograms/Doppler), and ex vivo infarct size (triphenyl tetrazolium chloride), regional AT1R and AT2R proteins (immunoblots), and apoptosis (TUNEL assay and DNA ladder) after regional anterior RMI (60 min ischemia, 90 min reperfusion) in Sprague-Dawley rats randomized to intravenous AT1R blockade with candesartan (1 mg/kg, n = 9) or saline (controls, n = 14) over 30 min before RMI, and sham (n = 8). We also assessed the effect of AT2R blockade (PD123319, 10 mg/kg i.v.) plus candesartan on infarct size and apoptosis. Compared to controls, candesartan significantly (p < 0.001) limited increases in left atrial pressure, improved positive LV dP/dtmax and negative dP/dtmin, normalized LV ejection fraction, improved LV diastolic function, limited infarct expansion, decreased infarct size and apoptosis, and increased AT2R protein (not AT1R) in the reperfused ischemic zone. There were no changes in sham hearts. PD123319 abolished the candesartan-induced decrease in infarct size and LV dysfunction but not the decrease in apoptosis. Thus, during AT1R blockade in the in vivo rat model of RMI, regional AT2R upregulation contributes to the beneficial effect on infarct size and LV dysfunction but not on apoptosis, suggesting that the apoptosis is AT1R not AT2R-mediated.  相似文献   
8.
Mitogen-activated protein kinases (MAPKs) have been implicated during ischemia-reperfusion (IR) and angiotensin II (AngII) type 2 receptor (AT2R) blockade has been shown to induce cardioprotection involving protein kinase Cepsilon (PKCepsilon) signaling after IR. We examined whether the 3 major MAPKs, p38, c-Jun NH2-terminal kinase (JNK-1 and JNK-2), and extracellular signal regulated kinases (ERK-1 and ERK-2) are activated after IR and whether treatment with the AT2R antagonist PD123,319 (PD) alters their expression. Isolated rat hearts were randomized to control (aerobic perfusion, 80 min), IR (no drug; 50 min of perfusion, 30 min global ischemia and 30 min reperfusion; working mode), and IR + PD (0.3 micromol/l) and left ventricular (LV) work was measured. We measured LV tissue content of p38, p-p38, p-JNK-1 (54 kDa), p-JNK-2 (46 kDa), p-ERK-1 (44 kDa), p-ERK-2 (42 kDa) and PKCepsilon proteins by immunoblotting and cGMP by enzyme immunoassay. IR resulted in significant LV dysfunction, increase in p-p38 and p-JNK-1/-2, no change in p-ERK-1/-2 or PKCepsilon, and decrease in cGMP. PD improved LV recovery after IR, induced a slight increase in p-p38 (p < 0.01 vs. control), normalized p-JNK-1, did not change p-ERK-1/-2, and increased PKCepsilon and cGMP. The overall results suggest that p38 and JNK might play a significant role in acute IR injury and the cardioprotective effect of AT2R blockade independent of ERK. The activation of p38 and JNKs during IR may be linked, in part, to AT2R stimulation.  相似文献   
9.
We assessed whether aging augments left ventricular (LV) damage, remodeling, and dysfunction and alters expression of healing-specific-matricellular proteins (HSMPs), matrix metalloproteinases (MMPs) and other pertinent proteins after acute reperfused-ST-segment-elevation myocardial infarction (RSTEMI) in the dog model. The findings suggest a novel role for HSMPs, MMPs, and the other proteins in the age-related increase in LV damage, remodeling, and dysfunction. Potentially detrimental effects of the altered proteins appear to outweigh beneficial effects and contribute to adverse outcome. Deleterious changes include the increase in matrix-degrading MMPs, inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha, HSMPs such as secreted-protein-acidic-and-rich-in-cysteine (SPARC) and osteopontin (OPN), the blunted increase in endothelial-NOS (eNOS), and the decrease in IL-10 and neuronal NOS (nNOS). Potentially beneficial changes include increases in the HSMP secretory-leucocyte-protease-inhibitor (SLPI) and cytokine transforming growth factor (TGF)-beta(1). Targeting these proteins may mitigate enhanced LV remodeling and dysfunction with aging.  相似文献   
10.
While secretory-leukocyte-protease-inhibitor (SLPI) may promote skin wound healing, its role in infarct healing after reperfused myocardial infarction (RMI) remains unclear. Short-term intravenous angiotensin II (AngII) receptor blocker therapy with candesartan (CN) attenuates increased SLPI and markers of early matrix/left ventricular (LV) in acute RMI. To determine whether reducing effects of AngII with CN or the vasopeptidase inhibitor omapatrilat (OMA) during the healing phase after RMI attenuates SLPI and other mediators of healing and matrix/LV remodeling, we measured these in Sprague–Dawley rats randomized to oral placebo, CN (30 mg/kg/day) or OMA (10 mg/kg/day) therapy during healing between days 2 and 23 after RMI and sham. On day-25, RMI-placebo showed significant LV remodeling, systolic/diastolic dysfunction and impaired passive compliance, and ischemic zone increases in SLPI, secreted-protein-acidic-and-rich-in-cysteine (SPARC) and osteopontin (OPN) mRNA and protein. In addition, metalloproteinase (MMP)-9 and -2, a-disintegrin-and-metalloproteinase (ADAM)-10 and -17, inducible-nitric-oxide-synthase (iNOS), pro-inflammatory cytokines interleukin (IL)-6, and tumor necrosis factor-α, transforming growth factor (TGF)-β1 and its signaling molecule p-Smad-2, myeloperoxidase (MPO), AngII, MPO-positive granulocytes, MAC387-positive macrophages and monocytes, scar collagens, cardiomyocyte and fibroblast apoptosis, and microvascular no-reflow also increased whereas anti-inflammatory cytokine IL-10 decreased. Both CN and OMA attenuated all the changes except IL-10, which normalized. Thus, CN or OMA treatment during healing after RMI results in attenuation of SLPI as well as tissue AngII and mediators of inflammation and matrix/LV remodeling including SPARC, OPN, and ADAMs. Whether increasing SLPI on top of background AngII inhibition or therapy such as CN or OMA might produce added remodeling benefit needs study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号