首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   2篇
  国内免费   1篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
  1979年   2篇
  1970年   1篇
  1966年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
A rat brain cDNA library was screened by using as a probe a fragment of cDNA encoding the alpha-subunit of human Na+,K+-ATPase. Two different cDNA clones were obtained and analyzed. One of them was concluded to be a cDNA encoding the alpha-subunit of the weakly ouabain-sensitive rat kidney-type Na+,K+-ATPase. The deduced amino acid sequence consists of 1,018 amino acids. The alpha-subunit of the rat kidney-type Na+,K+-ATPase shows 97% homology in amino acid sequence with the alpha-subunit of human, sheep, or pig enzyme and 87% with that of Torpedo. Based on a comparison of the amino acid sequence at the extracellular domain of the alpha-subunit between weakly ouabain-sensitive rat kidney-type enzyme and the ouabain-sensitive human, sheep, pig, or Torpedo enzyme, it was proposed that only two significant amino acid replacements are unique to the rat kidney-type alpha-subunit. Another cDNA clone obtained showed 72% homology in nucleotide sequence with the former cDNA coding the alpha-subunit of the rat kidney-type Na+,K+-ATPase and the deduced amino acid sequence exhibited 85% homology with that of the alpha-subunit of rat kidney-type Na+,K+-ATPase.  相似文献   
2.
We have investigated the ability of mAb against LPS to inhibit LPS-induced activation of 7OZ/3 pre-B cells. The fine specificity and relative affinity of these mAb for lipid A and LPS were also determined. We found that antibodies inhibited only the activity of glycolipids which they bound with relatively high affinity. However, two high affinity antibodies binding to non-lipid A epitopes did not block cellular activation. Some, but not all, relatively high affinity antibodies binding to the lipid A region of the LPS molecule inhibited biologic activity. The inhibitory antibodies bound to at least two distinct epitopes within the lipid A region. These data suggest that LPS interacts with 7OZ/3 cells in a highly specific fashion.  相似文献   
3.
A hybridoma cell line producing mouse monoclonal antibody against pig kidney Na,K-ATPase was established. The antibody, named 38 (mAb38, IgG1), was purified from mouse ascites fluid by chromatography on a protein A-Sepharose column. Antigens immobilized on microplate wells with p-benzoquinone were used for titer assays. mAb38 cross-reacted with both dodecyloctaethyleneglycol monoether (C12E8)-solubilized enzyme and membranous sodium dodecyl sulfate (SDS)-treated enzyme from kidney with high affinity (50% binding = 0.6 nM). However, the antibody bound to neither alpha- nor beta-subunit separated by preparative SDS-polyacrylamide gel electrophoresis (PAGE). The stoichiometry of antibody binding to the purified enzyme was estimated to be about 0.86 mol of IgG per mol of alpha beta-protomer. Na,K-ATPase proteins were recovered from a column of mAb38-coupled Affi-Gel by elution with pH 3 buffer when C12E8-solubilized kidney enzyme or detergent extracts of brain microsomes were applied to it, confirming that the mAb is directed to Na,K-ATPase. mAb38 at saturation level concentrations had no effect on kidney Na,K-ATPase activity or on ouabain-sensitive Rb uptake in erythrocytes. In an immunofluorescence study, the antibody bound to intact erythrocytes much more strongly than control IgG1 (mAb50c), but the extent of the antibody binding to inside-out vesicles under hypotonic conditions was lower than that of the control. Most of the antibody binding activity remained when the kidney enzyme was treated with sialidase. These results suggest that this mAb38 was raised against an intact conformation of a cell-surface-exposed site of Na,K-ATPase.  相似文献   
4.
Summary The effects of calmodulin (CaM) antagonists (W-7, W-5, trifluoperazine, chlorpromazine, quinacrine, diazepam, propericyazine and carmidazolium) on the sodium and potassium channels were studied on the intracellularly perfused and voltage-clamped giant axon of the squid. It was found that the drugs are more potent blockers of the sodium current than of the potassium current. The drugs also reduce the sodium gating current. The blockage of the sodium and gating current can be explained by assuming that the drugs interact with the sodium gating subunit in one of its closed states. The site of action is probably the intracellular surface of the axolemma where presumably a Ca2+-calmodulin complex can be formed.  相似文献   
5.
We compared several Na,K-ATPase preparations from various organs of the rat. The brain Na,K-ATPase differed from the enzymes of other organs in its pH dependence and responses to ouabain and N-ethylmaleimide in spite of similarities in the kinetic parameters of activation by Na+, K+, Mg2+, and ATP. The optimum pH of the brain MaI-enzyme was at 7.4 to 7.5 at 37 degrees D. The Lubrol extract of this brain enzyme preparation showed a lower optimum oH of 6.6. When the Lubrol extract of the brain was fractionated wtih (NH4)2SO4, the activity of the precipitate in the neutral pH region was restored. On the other hand, the optimum pH of the kidney NaI-enzyme was slightly affected by Lubrol and ammonium sulfate treatments (pH 7.5 leads to 7.3). The brain enzyme (K 1/2 = 0.9 microM) showed about 100-fold higher sensitivity to ouabain than the enzymes from other organs (I 1/2 = 100 microM) in the presence of 120 mM Na+ and 10 mM K+. In a Hill plot of the ouabain inhibition, the former failed to give a linear relationship, while the latter gave a straight line with a Hill coefficient of 1.0. The effect of K4 on the brain enzyme-ouabain interaction led us to consider that the brain enzyme might have two components as regards ouabain affinity, high and low affinity components. The time course of N-ethylmaleimide inhibition of the brain enzyme was rapid and biphasic, while the kidney enzyme showed only a slow phase following pseudo-first order kinetics. ATP protected the kidney enzyme activity completely agai,st N-ethylmaleimide inhibition, but the protection of the brain enzyme activity by ATP was only partial. We divided rat Na,K-ATPases into two groups, the brain type, which is restricted to the central nervous system, and the kidney type, which is found in most organs.  相似文献   
6.
Enantioselective formation of cyclohexene derivatives bearing an all-carbon quaternary stereogenic center is described. The racemic cyclohexenes are readily transformed to chiral substituted cyclohexenes in good yield with excellent enantioselectivity and diastereoselectivity by a palladium-mediated deracemization. The resulting products are promising synthetic intermediates of biologically active natural products. This protocol provides us with a new entry to the concise and scalable synthesis of multifunctionalized compounds.  相似文献   
7.
8.
Nitric oxide (NO) is a multifunctional messenger molecule generated from L-arginine by a family of enzymes, including nitric oxide synthase (NOS). This study was performed to examine whether NO modulates the production of matrix metalloproteinases (MMPs), which degrade all components of extracellular matrix (ECM), in rheumatoid synovial cells. We investigated the effects of exogenously generated NO by a NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), on the MMPs production by rheumatoid synovial cells. Culture media conditioned by SNAP-treated synovial cells were examined by gelatin zymography and immunoblot analysis. Incubation of synovial cells with SNAP resulted in gelatinase A production in a dose-dependent fashion. Furthermore, RT-PCR analysis demonstrated that MMP-2 mRNA expression was induced in SNAP-treated synovial cells. In contrast, SNAP did not influence the production of TIMP-1 and TIMP-2, which preferentially inhibit MMP-2, by rheumatoid synovial cells. Our data indicate that NO could modulate MMP production by rheumatoid synovial cells and therefore contribute to ECM degradation of articular components in RA.  相似文献   
9.
Improving quality of life has been recognized as an important outcome for schizophrenia treatment, although the fundamental determinants are not well understood. In this study, we investigated the association between brain structural abnormalities and objective quality of life in schizophrenia patients. Thirty-three schizophrenia patients and 42 age-, sex-, and education-matched healthy participants underwent magnetic resonance imaging. The Quality of Life Scale was used to measure objective quality of life in schizophrenia patients. Voxel-based morphometry was performed to identify regional brain alterations that correlate with Quality of Life Scale score in the patient group. Schizophrenia patients showed gray matter reductions in the frontal, temporal, limbic, and subcortical regions. We then performed voxel-based multiple regression analysis in these regions to identify any correlations between regional gray matter volume and Quality of Life Scale scores. We found that among four subcategories of the scale, the Instrumental Role category score correlated with gray matter volume in the right anterior insula in schizophrenia patients. In addition, this correlation was shown to be mediated by negative symptoms. Our findings suggest that the neural basis of objective quality of life might differ topographically from that of subjective QOL in schizophrenia.  相似文献   
10.
RNA research and therapy relies primarily on synthetic RNAs. We employed recombinant RNA technology toward large-scale production of pre-miRNA agents in bacteria, but found the majority of target RNAs were not or negligibly expressed. We thus developed a novel strategy to achieve consistent high-yield biosynthesis of chimeric RNAs carrying various small RNAs (e.g. miRNAs, siRNAs and RNA aptamers), which was based upon an optimal noncoding RNA scaffold (OnRS) derived from tRNA fusion pre-miR-34a (tRNA/mir-34a). Multi-milligrams of chimeric RNAs (e.g. OnRS/miR-124, OnRS/GFP-siRNA, OnRS/Neg (scrambled RNA) and OnRS/MGA (malachite green aptamer)) were readily obtained from 1 l bacterial culture. Deep sequencing analyses revealed that mature miR-124 and target GFP-siRNA were selectively released from chimeric RNAs in human cells. Consequently, OnRS/miR-124 was active in suppressing miR-124 target gene expression and controlling cellular processes, and OnRS/GFP-siRNA was effective in knocking down GFP mRNA levels and fluorescent intensity in ES-2/GFP cells and GFP-transgenic mice. Furthermore, the OnRS/MGA sensor offered a specific strong fluorescence upon binding MG, which was utilized as label-free substrate to accurately determine serum RNase activities in pancreatic cancer patients. These results demonstrate that OnRS-based bioengineering is a common, robust and versatile strategy to assemble various types of small RNAs for broad applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号