首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   11篇
  2019年   1篇
  2017年   1篇
  2015年   5篇
  2014年   5篇
  2013年   6篇
  2012年   9篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1984年   1篇
  1981年   3篇
  1977年   3篇
  1975年   2篇
  1970年   1篇
  1920年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
1.
2.
Acetonitrile extracts of cigarette tar inhibit state 3 and state 4 respiration of intact mitochondria. Exposure of respiring submitochondrial particles to acetonitrile extracts of cigarette tar results in a dose-dependent inhibition of oxygen consumption and reduced nicotinamide adenine dinucleotide (NADH) oxidation. This inhibition was not due to a solvent effect since acetonitrile alone did not alter oxygen consumption or NADH oxidation. Intact mitochondria are less sensitive to extracts of tar than submitochondrial particles. The NADH-ubiquinone (Q) reductase complex is more sensitive to inhibition by tar extract than the succinate-Q reductase and cytochrome complexes. Nicotine or catechol did not inhibit respiration of intact mitochondria. Treatment of submitochondrial particles with cigarette tar results in the formation of hydroxyl radicals, detected by electron spin resonance (ESR) spin trapping. The ESR signal attributable to the hydroxyl radical spin adduct requires the presence of NADH and is completely abolished by catalase and to a lesser extent superoxide dismutase (SOD). Catalase and SOD did not protect the mitochondrial respiratory chain from inhibition by tar extract, indicating that the radicals detected by ESR spin trapping are not responsible for the inhibition of the electron transport. We propose that tar causes at least two effects: (1) Tar components interact with the electron transport chain and inhibit electron flow, and (2) tar components interact with the electron transport chain, ultimately to form hydroxyl radicals.  相似文献   
3.
Diphtheria toxin inactivates protein synthesis elongation factor 2 by attaching ADP-ribose to an unusual post-translational amino acid derivative, diphthamide, in the factor. Previously, we prepared ribosyl-diphthamide from the ADP-ribosyl-factor and proposed on the basis of NMR spectral analysis that it is 1-α-d-ribofuranosyl-2-[3-carboxyamido-3-(trimethylammonio)propyl]histidine [N. J. Oppenheimer, and J. W. Bodley, (1981) J. Biol. Chem.256, 8579–8581 and op. cit.]. Now, using fast atom bomardment mass spectrometry, the intact cation of ribosyl-diphthamide has been observed in the gas phase. The theoretical mass of the structure proposed for ribosyl-diphthamide uniquely agrees with the observed mass of the inact cation of the compound to within 2 ppm. Collisional activation decomposition mass spectral analysis provided additional structural confirmation. Thus, although the compound has not been synthesized, all available evidence appears uniquely consistent with the structure of ribosyl-diphthamide previously proposed.  相似文献   
4.
The distribution of Na+ pump sites (Na+-K+-ATPase) in the secretory epithelium of the avian salt gland was demonstrated by freeze-dry autoradiographic analysis of [(3)H] ouabain binding sites. Kinetic studies indicated that near saturation of tissue binding sites occurred when slices of salt glands from salt-stressed ducks were exposed to 2.2 μM ouabain (containing 5 μCi/ml [(3)H]ouabain) for 90 min. Washing with label-free Ringer's solution for 90 min extracted only 10% of the inhibitor, an amount which corresponded to ouabain present in the tissue spaces labeled by [(14)C]insulin. Increasing the KCl concentration of the incubation medium reduced the rate of ouabain binding but not the maximal amount bound. In contrast to the low level of ouabain binding to salt glands of ducks maintained on a freshwater regimen, exposure to a salt water diet led to a more than threefold increase in binding within 9-11 days. This increase paralleled the similar increment in Na+-K+-ATPase activity described previously. [(3)H]ouabain binding sites were localized autoradiographically to the folded basolateral plasma membrane of the principal secretory cells. The luminal surfaces of these cells were unlabeled. Mitotically active peripheral cells were also unlabeled. The cell-specific pattern of [(3)H]ouabain binding to principal secretory cells and the membrane-specific localization of binding sites to the nonluminal surfaces of these cells were identical to the distribution of Na+-K+-ATPase as reflected by the cytochemical localization of ouabain-sensitive and K+-dependent nitrophenyl phosphatase activity. The relationship between the nonluminal localization of Na+-K+-ATPase and the possible role of the enzyme n NaCl secretion is considered in the light of physiological data on electrolyte transport in salt glands and other secretory epithelia.  相似文献   
5.
The concept of "stimulus-secretion coupling" suggested by Douglas and co-workers to explain the events related to monamine discharge by the adrenal medulla (5, 7) may be applied to other endocrine tissues, such as adrenal cortex (36), pancreatic islets (4), and magnocellular hypothalamic neurons (6), which exhibit a similar ion-dependent process of hormone elaboration. In addition, they share another feature, that of joining neighbor cells via membrane junctions (12, 26, and Fletcher, unpublished observation). Given this, and the reports that hormone secretion by the pars distalis also involves a secretagogue-induced decrease in membrane bioelectric potential accompanied by a rise in cellular [Ca++] (27, 34, 41), it was appropriate to test the possibility that cells of the anterior pituitary gland are united by junctions.  相似文献   
6.
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.  相似文献   
7.
This study was conducted to examine the psycho-emotional effects of repeated oral exposure to capsaicin, the principal active component of chili peppers. Each rat received 1 mL of 0.02% capsaicin into its oral cavity daily, and was subjected to behavioural tests following 10 daily administrations of capsaicin. Stereotypy counts and rostral grooming were significantly increased, and caudal grooming decreased, in capsaicin-treated rats during the ambulatory activity test. In elevated plus maze test, not only the time spent in open arms but also the percent arm entry into open arms was reduced in capsaicin-treated rats compared with control rats. In forced swim test, although swimming duration was decreased, struggling increased in the capsaicin group, immobility duration did not differ between the groups. Repeated oral capsaicin did not affect the basal levels of plasma corticosterone; however, the stress-induced elevation of plasma corticosterone was prolonged in capsaicin treated rats. Oral capsaicin exposure significantly increased c-Fos expression not only in the nucleus tractus of solitarius but also in the paraventricular nucleus. Results suggest that repeated oral exposure to capsaicin increases anxiety-like behaviours in rats, and dysfunction of the hypothalamic-pituitary-adrenal axis may play a role in its pathophysiology.  相似文献   
8.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental and occupational toxicants, which are a major human health concern in the U.S. and abroad. Previous research has focused on the genotoxic events caused by high molecular weight PAHs, but not on non-genotoxic events elicited by low molecular weight PAHs. We used an isomeric pair of low molecular weight PAHs, namely 1-Methylanthracene (1-MeA) and 2-Methylanthracene (2-MeA), in which only 1-MeA possessed a bay-like region, and hypothesized that 1-MeA, but not 2-MeA, would affect non-genotoxic endpoints relevant to tumor promotion in murine C10 lung cells, a non-tumorigenic type II alveolar pneumocyte and progenitor cell type of lung adenocarcinoma. The non-genotoxic endpoints assessed were dysregulation of gap junction intercellular communication function and changes in the major pulmonary connexin protein, connexin 43, using fluorescent redistribution and immunoblots, activation of mitogen activated protein kinases (MAPK) using phosphospecific MAPK antibodies for immunoblots, and induction of inflammatory genes using quantitative RT-PCR. 2-MeA had no effect on any of the endpoints, but 1-MeA dysregulated gap junctional communication in a dose and time dependent manner, reduced connexin 43 protein expression, and altered membrane localization. 1-MeA also activated ERK1/2 and p38 MAP kinases. Inflammatory genes, such as cyclooxygenase 2, and chemokine ligand 2 (macrophage chemoattractant 2), were also upregulated in response to 1-MeA only. These results indicate a possible structure-activity relationship of these low molecular weight PAHs relevant to non-genotoxic endpoints of the promoting aspects of cancer. Therefore, our novel findings may improve the ability to predict outcomes for future studies with additional toxicants and mixtures, identify novel targets for biomarkers and chemotherapeutics, and have possible implications for future risk assessment for these PAHs.  相似文献   
9.

Objective

Bronchiectasis (BE) in children is common in some communities including Indigenous children in Australia. Relatively little is known about the nature of systemic inflammation in these children, especially the contribution of specific pro-inflammatory and cytotoxic lymphocyte subsets: T-cells, natural killer (NK) cells and NKT-like cells. We have shown that these cells produce increased cytotoxic (granzyme b and perforin) and inflammatory (IFNγ and TNFα) mediators in several adult chronic lung diseases and hypothesised that similar changes would be evident in children with BE.

Methods

Intracellular cytotoxic mediators perforin and granzyme b and pro-inflammatory cytokines were measured in T cell subsets, NKT-like and NK cells from blood and bronchoalveolar samples from 12 children with BE and 10 aged-matched control children using flow cytometry.

Results

There was a significant increase in the percentage of CD8+ T cells and T and NKT-like subsets expressing perforin/granzyme and IFNγ and TNFα in blood in BE compared with controls. There was a further increase in the percentage of pro-inflammatory cytotoxic T cells in Indigenous compared with non-Indigenous children. There was no change in any of these mediators in BAL.

Conclusions

Childhood bronchiectasis is associated with increased systemic pro-inflammatory/cytotoxic lymphocytes in the peripheral blood. Future studies need to examine the extent to which elevated levels of pro-inflammatory cytotoxic cells predict future co-morbidities.  相似文献   
10.
As uncontrolled cell proliferation requires nucleotide biosynthesis, inhibiting enzymes that mediate nucleotide biosynthesis constitutes a rational approach to the management of oncological diseases. In practice, however, results of this strategy are mixed and thus elucidation of the mechanisms by which cancer cells evade the effect of nucleotide biosynthesis restriction is urgently needed. Here we explored the notion that intrinsic differences in cancer cell cycle velocity are important in the resistance toward inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA). In short-term experiments, MPA treatment of fast-growing cancer cells effectively elicited G0/G1 arrest and provoked apoptosis, thus inhibiting cell proliferation and colony formation. Forced expression of a mutated IMPDH2, lacking a binding site for MPA but retaining enzymatic activity, resulted in complete resistance of cancer cells to MPA. In nude mice subcutaneously engrafted with HeLa cells, MPA moderately delayed tumor formation by inhibiting cell proliferation and inducing apoptosis. Importantly, we developed a lentiviral vector–based Tet-on label-retaining system that enables to identify, isolate and functionally characterize slow-cycling or so-called label-retaining cells (LRCs) in vitro and in vivo. We surprisingly found the presence of LRCs in fast-growing tumors. LRCs were superior in colony formation, tumor initiation and resistance to MPA as compared with fast-cycling cells. Thus, the slow-cycling compartment of cancer seems predominantly responsible for resistance to MPA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号