首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   9篇
  2020年   3篇
  2019年   1篇
  2018年   8篇
  2017年   6篇
  2016年   1篇
  2015年   7篇
  2014年   10篇
  2013年   14篇
  2012年   10篇
  2011年   10篇
  2010年   10篇
  2009年   4篇
  2008年   9篇
  2007年   6篇
  2006年   8篇
  2005年   11篇
  2004年   19篇
  2003年   9篇
  2002年   12篇
  2001年   7篇
  2000年   9篇
  1999年   5篇
  1998年   2篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1982年   1篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
1.
The interaction between Escherichia coli O157:H7 and its specific bacteriophage PP01 was investigated in chemostat continuous culture. Following the addition of bacteriophage PP01, E. coli O157:H7 cell lysis was observed by over 4 orders of magnitude at a dilution rate of 0.876 h−1 and by 3 orders of magnitude at a lower dilution rate (0.327 h−1). However, the appearance of a series of phage-resistant E. coli isolates, which showed a low efficiency of plating against bacteriophage PP01, led to an increase in the cell concentration in the culture. The colony shape, outer membrane protein expression, and lipopolysaccharide production of each escape mutant were compared. Cessation of major outer membrane protein OmpC production and alteration of lipopolysaccharide composition enabled E. coli O157:H7 to escape PP01 infection. One of the escape mutants of E. coli O157:H7 which formed a mucoid colony (Mu) on Luria-Bertani agar appeared 56 h postincubation at a dilution rate of 0.867 h−1 and persisted until the end of the experiment (~200 h). Mu mutant cells could coexist with bacteriophage PP01 in batch culture. Concentrations of the Mu cells and bacteriophage PP01 increased together. The appearance of mutant phage, which showed a different host range among the O157:H7 escape mutants than wild-type PP01, was also detected in the chemostat culture. Thus, coevolution of phage and E. coli O157:H7 proceeded as a mutual arms race in chemostat continuous culture.  相似文献   
2.
We have isolated rat rig/ribosomal protein S15 gene from a DNA library derived from a rat insulinoma and determined the complete nucleotide sequence. The rat rig/S15 gene is composed of four exons and three introns spanning 2 kbp and exhibits distinctive structural features unique for a ribosomal protein gene.  相似文献   
3.
The influence of operating parameters such as bead loading, peripheral velocity and bead size on the kinetic behavior of cell disruption in a bead mill was investigated. The bead mill was equipped with a single rotating disc and operated batchwise. Analysis of the data showed that the frequency of bead collision may be correlated to the observed first-order process, applying a new concept called effective disruption volume. It was found that the first-order rate constant was proportional to the square of bead loading within the other experimental conditions examined and increased with the decrease in bead diameter. A new disruption kinetics was proposed, explaining all the observed data in terms of the frequency of bead collision and the concept of effective disruption volume. Although other types of microorganisms were not examined, the concept may well be extended to various kinds of cells.  相似文献   
4.
5.
Invasive ductal adenocarcinoma (IDA) of the pancreas manifests poor prognosis due to the early invasion and distant metastasis. In contrast, intraductal papillary mucinous adenoma or carcinoma (IPMA or IPMC) reveals better clinical outcomes. Various molecular mechanisms contribute to these differences but entire picture is still unclear. Recent researches emphasized the important role of miRNA in biological processes including cancer invasion and metastasis. We previously described that miR‐126 is down‐regulated in IDA compared with IPMA or IPMC, and miR‐126 regulates the expression of invasion related molecule disintegrin and metalloproteinase domain‐containing protein 9 (ADAM9). Assessing the difference of miRNA expression profiles of IDA, IPMA, and IPMC, we newly identified miR‐197 as an up‐regulated miRNA specifically in IDA. Expression of miR‐197 in pancreatic cancer cells resulted in the induction of epithelial–mesenchymal transition (EMT) along with the down‐regulation of p120 catenin which is a putative target of miR‐197. Direct interaction between miR‐197 and p120 catenin mRNA sequence was confirmed by 3′UTR assay, and knockdown of p120 catenin recapitulated EMT induction in pancreatic cancer cells. In situ hybridization of miR‐197 and immunohistochemistry of p120 catenin showed mutually exclusive patterns suggesting pivotal role of miR‐197 in the regulation of p120 catenin. This miR‐197/p120 catenin axis could be a novel therapeutic target. J. Cell. Physiol. 228: 1255–1263, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
6.
Heme oxygenase catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide. Here, we present crystal structures of the substrate-free, Fe3+-biliverdin-bound, and biliverdin-bound forms of HmuO, a heme oxygenase from Corynebacterium diphtheriae, refined to 1.80, 1.90, and 1.85 Å resolution, respectively. In the substrate-free structure, the proximal and distal helices, which tightly bracket the substrate heme in the substrate-bound heme complex, move apart, and the proximal helix is partially unwound. These features are supported by the molecular dynamic simulations. The structure implies that the heme binding fixes the enzyme active site structure, including the water hydrogen bond network critical for heme degradation. The biliverdin groups assume the helical conformation and are located in the heme pocket in the crystal structures of the Fe3+-biliverdin-bound and the biliverdin-bound HmuO, prepared by in situ heme oxygenase reaction from the heme complex crystals. The proximal His serves as the Fe3+-biliverdin axial ligand in the former complex and forms a hydrogen bond through a bridging water molecule with the biliverdin pyrrole nitrogen atoms in the latter complex. In both structures, salt bridges between one of the biliverdin propionate groups and the Arg and Lys residues further stabilize biliverdin at the HmuO heme pocket. Additionally, the crystal structure of a mixture of two intermediates between the Fe3+-biliverdin and biliverdin complexes has been determined at 1.70 Å resolution, implying a possible route for iron exit.  相似文献   
7.
Small animal models of afterload stress have contributed much to our present understanding of the progression from hypertension to heart failure. High-sensitivity methods for phenotyping cardiac function in vivo, particular in the setting of compensated cardiac hypertrophy, may add new information regarding alterations in cardiac performance that can occur even during the earliest stages of exposure to pressure overload. We have developed an echocardiographic analytical method, based on speckle-tracking-based strain analyses, and used this tool to rapidly phenotype cardiac changes resulting from afterload stress in a small animal model. Adult mice were subjected to ascending aortic constriction, with and without subsequent reversal of the pressure gradient. In this model of compensated hypertrophic cardiac remodeling, conventional echocardiographic measurements did not detect changes in left ventricular (LV) function at the early time points examined. Strain analyses, however, revealed a decrement in basal longitudinal myofiber shortening that was induced by aortic constriction and improved following relief of the pressure gradient. Furthermore, we observed that pressure overload resulted in LV segmental dyssynchrony that was attenuated with return of the afterload to baseline levels. Herein, we describe the use of echocardiographic strain analyses for cardiac phenotyping in a mouse model of pressure overload. This method provides evidence of dyssynchrony and regional myocardial dysfunction that occurs early with compensatory hypertrophy, and improves following relief of aortic constriction. Importantly, these findings illustrate the utility of a rapid, non-invasive method for characterizing early cardiac dysfunction, not detectable by conventional echocardiography, following afterload stress.  相似文献   
8.
We have performed resonance Raman and electron paramagnetic resonance (EPR) studies on the dioxygen bound state of the D251N mutant of cytochrome P450cam (oxy-P450cam) and its complex with reduced putidaredoxin (Pd). The D251N oxy-P450cam/Pd complex has a perturbed proton delivery mechanism and shows a significantly red-shifted UV-visible spectrum as observed in Benson et al. [Benson, D. E., Suslick, K. S., and Sligar, S. G. (1997) Biochemistry 36, 5104-5107]. The red shift has been interpreted to indicate a major perturbation of the electronic structure of the oxy-heme complex. However, we find no evidence that electron transfer has occurred from Pd to the heme active site of D251N oxy-P450cam. This suggests that both electron and proton transfer are perturbed by the D251N mutation and that these processes may be coupled. Three oxygen isotope sensitive Raman features are identified in the Pd complex, and occur at 1137, 536, and 399 cm(-1). These values are not significantly different from those for WT or D251N oxy-P450cam. However, a careful examination of the oxygen stretching feature near 1137 cm(-1) reveals the presence of three peaks at 1131, 1138, and 1146 cm(-1), which we attribute to the presence of conformational substates in oxy-P450cam. A significant change in the conformational substate population is observed for the D251N oxy-P450cam when the Pd complex is formed. We suggest that the conformational population redistribution of oxy-P450cam, along with the red-shifted electronic spectra, reflects a structural equilibrium of the oxy-heme that is perturbed upon Pd binding. We propose that this structural perturbation is connected to the effector function of Pd and may involve changes in the electron donation properties of the thiolate ligand.  相似文献   
9.
The crystal structure of the Pyrus pyrifolia pistil ribonuclease (S(3)-RNase) responsible for gametophytic self-incompatibility was determined at 1.5-A resolution. It consists of eight helices and seven beta-strands, and its folding topology is typical of RNase T(2) family enzymes. Based on a structural comparison of S(3)-RNase with RNase Rh, a fungal RNase T(2) family enzyme, the active site residues of S(3)-RNase assigned were His(33) and His(88) as catalysts and Glu(84) and Lys(87) as stabilizers of an intermediate in the transition state. Moreover, amino acid residues that constitute substrate binding sites of the two RNases could be superimposed geometrically. A hypervariable (HV) region that has an S-allele-specific sequence comprises a long loop and short alpha-helix. This region is far from the active site cleft, exposed on the molecule's surface, and positively charged. Four positively selected (PS) regions, in which the number of nonsynonymous substitutions exceeds that of synonymous ones, are located on either side of the active site cleft, and accessible to solvent. These structural features suggest that the HV or PS regions may interact with a pollen S-gene product(s) to recognize self and non-self pollen.  相似文献   
10.
Two morphological types of appendages, an anchor-like appendage and a peritrichate fibril-type appendage, have been observed on cells of an adhesive bacterium, Acinetobacter sp. strain Tol 5, by use of recently developed electron microscopic techniques. The anchor extends straight to the substratum without branching and tethers the cell body at its end at distances of several hundred nanometers, whereas the peritrichate fibril attaches to the substratum in multiple places, fixing the cell at much shorter distances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号