首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2009年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1989年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
N:-acetylglucosaminyltransferase I (GnT I) serves as the gateway from oligomannose to hybrid and complex N:-glycans and plays a critical role in mammalian development and possibly all metazoans. We have determined the X-ray crystal structure of the catalytic fragment of GnT I in the absence and presence of bound UDP-GlcNAc/Mn(2+) at 1.5 and 1.8 A resolution, respectively. The structures identify residues critical for substrate binding and catalysis and provide evidence for similarity, at the mechanistic level, to the deglycosylation step of retaining beta-glycosidases. The structuring of a 13 residue loop, resulting from UDP-GlcNAc/Mn(2+) binding, provides an explanation for the ordered sequential 'Bi Bi' kinetics shown by GnT I. Analysis reveals a domain shared with Bacillus subtilis glycosyltransferase SpsA, bovine beta-1,4-galactosyl transferase 1 and Escherichia coli N:-acetylglucosamine-1-phosphate uridyltransferase. The low sequence identity, conserved fold and related functional features shown by this domain define a superfamily whose members probably share a common ancestor. Sequence analysis and protein threading show that the domain is represented in proteins from several glycosyltransferase families.  相似文献   
2.
Glycosyltransferase structure and mechanism   总被引:2,自引:0,他引:2  
The high-resolution X-ray crystal structures of a new form of bacteriophage T4 beta-glucosyltransferase, Escherichia coli MurG, Bacillus subtilis SpsA, bovine beta-1,4-galactosyltransferase 1 and rabbit N-acetylglucosaminyltransferase I have now been solved. These glycosyltransferase structures have provided the first detailed view of the structural basis of catalysis, as well as new insight into glycosyltransferase classification.  相似文献   
3.
4.
Rat basophilic leukemia (RBL-2H3) cells were cultured in medium containing [3H]arachidonic acid and labelling of the different lipid fractions was followed with time. After up to 4 h of culture, the label was found mostly in phosphatidylcholine. After 8 h, labelling of phosphatidylethanolamine gradually exceeded that of phosphatidylcholine, until at 24 h, approximate equilibrium labelling of the lipid fractions was attained and 45% of the label was found in phosphatidylethanolamine, 35% in phosphatidylcholine, 18% in the phosphatidylserine/inositide fraction and the remainder in the neutral lipid fraction. Stimulation of cells with A23187 after 30 min of labelling caused release of [3H]arachidonic acid which was accountable by a decrease in radioactivity of phosphatidylcholine, whereas stimulation of cells after 24 h of labelling caused the release of radioactive arachidonic acid, which was accompanied by a decrease of label in both phosphatidylcholine and phosphatidylethanolamine. Incubation of the labelled cells with phorbol 12-myristate 13-acetate prior to ionophore addition enhanced both the release of [3H]arachidonic acid and its metabolites and the decrease in label of the same phospholipids as those affected by ionophore alone. Under our conditions, the enhancement effects of phorbol ester were greatest after 2-5 min of preincubation, prior to ionophore addition. The results suggest that in basophilic leukemia cells, arachidonic acid release proceeds from several pools of phospholipids and that the activity of the phospholipase(s) involved is modulated by protein kinase C.  相似文献   
5.
There has been considerable interest recently in the application of bagging in the classification of both gene-expression data and protein-abundance mass spectrometry data. The approach is often justified by the improvement it produces on the performance of unstable, overfitting classification rules under small-sample situations. However, the question of real practical interest is whether the ensemble scheme will improve performance of those classifiers sufficiently to beat the performance of single stable, nonoverfitting classifiers, in the case of small-sample genomic and proteomic data sets. To investigate that question, we conducted a detailed empirical study, using publicly-available data sets from published genomic and proteomic studies. We observed that, under t-test and RELIEF filter-based feature selection, bagging generally does a good job of improving the performance of unstable, overfitting classifiers, such as CART decision trees and neural networks, but that improvement was not sufficient to beat the performance of single stable, nonoverfitting classifiers, such as diagonal and plain linear discriminant analysis, or 3-nearest neighbors. Furthermore, as expected, the ensemble method did not improve the performance of these classifiers significantly. Representative experimental results are presented and discussed in this work.  相似文献   
6.
UDP-GlcNAc : -3-D-mannoside -1,2-N-acetylglucosaminyltransferase I (GnT I, EC 2.4.1.101) plays an essential role in the conversion of oligomannose to complex and hybrid N-glycans. Rabbit GnTI is 447 residues long and has a short four-residue N-terminal cytoplasmic tail, a 25-residue putative signal–anchor hydrophobic domain, a stem region of undetermined length and a large C-terminal catalytic domain, a structure typical of all glycosyltransferases cloned to date. Comparison of the amino acid sequences for human, rabbit, mouse, rat, chicken, frog and Caenorhabditis elegans GnT I was used to obtain a secondary structure prediction for the enzyme which suggested that the location of the junction between the stem and the catalytic domain was at about residue 106. To test this hypothesis, several hybrid constructs containing GnT I with N- and C-terminal truncations fused to a mellitin signal sequence were inserted into the genome of Autographa californica nuclear polyhedrosis virus (AcMNPV), Sf 9 insect cells were infected with the recombinant baculovirus and supernatants were assayed for GnT I activity. Removal of 29, 84 and 106 N-terminal amino acids had no effect on GnT I activity; however, removal of a further 14 amino acids resulted in complete loss of activity. Western blot analysis showed strong protein bands for all truncated enzymes except for the construct lacking 120 N-terminal residues indicating proteolysis or defective expression or secretion of this protein. The data indicate that the stem is at least 77 residues long.  相似文献   
7.
The developing brain is vulnerable to environmental factors. We investigated the effects of air that contained 0.05, 0.1 and 0.3% CO2 on the hippocampus, prefrontal cortex (PFC) and amygdala. We focused on the circuitry involved in the neurobiology of anxiety, spatial learning, memory, and on insulin-like growth factor-1 (IGF-1), which is known to play a role in early brain development in rats. Spatial learning and memory were impaired by exposure to 0.3% CO2 air, while exposure to 0.1 and 0.3% CO2 air elevated blood corticosterone levels, intensified anxiety behavior, increased superoxide dismutase (SOD) enzyme activity and MDA levels in hippocampus and PFC; glutathione peroxidase (GPx) enzyme activity decreased in the PFC with no associated change in the hippocampus. IGF-1 levels were decreased in the blood, PFC and hippocampus by exposure to both 0.1 and 0.3% CO2. In addition, apoptosis was increased, while cell numbers were decreased in the CA1 regions of hippocampus and PFC after 0.3% CO2 air exposure in adolescent rats. A positive correlation was found between the blood IGF-1 level and apoptosis in the PFC. We found that chronic exposure to 0.3% CO2 air decreased IGF-1 levels in the serum, hippocampus and PFC, and increased oxidative stress. These findings were associated with increased anxiety behavior, and impaired memory and learning.  相似文献   
8.
Complex performance diagnostics in sports medicine should contain maximal aerobic and maximal anaerobic performance. The requirements on appropriate stress protocols are high. To validate a test protocol quality criteria like objectivity and reliability are necessary. Therefore, the present study was performed in intention to analyze the reliability of maximal lactate production rate (V.Lamax) by using a sprint test, maximum oxygen consumption (V.O2max) by using a ramp test and, based on these data, resulting power in calculated maximum lactate-steady-state (PMLSS) especially for amateur cyclists. All subjects (n = 23, age 26 ± 4 years) were leisure cyclists. At three different days they completed first a sprint test to approximate V.Lamax. After 60 min of recreation time a ramp test to assess V.O2max was performed. The results of V.Lamax-test and V.O2max-test and the body weight were used to calculate PMLSS for all subjects. The intra class correlation (ICC) for V.Lamax and V.O2max was 0.904 and 0.987, respectively, coefficient of variation (CV) was 6.3% and 2.1%, respectively. Between the measurements the reliable change index of 0.11 mmol·l -1s -1 for V.Lamax and 3.3 mlkg -1min -1 for V.O2max achieved significance. The mean of the calculated PMLSS was 237 ± 72 W with an RCI of 9 W and reached with ICC = 0.985 a very high reliability. Both metabolic performance tests and the calculated PMLSS are reliable for leisure cyclists.  相似文献   
9.
Chen W  Unligil UM  Rini JM  Stanley P 《Biochemistry》2001,40(30):8765-8772
A key enzyme in regulating the maturation of N-linked glycans is UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GlcNAc-TI, EC 2.4.1.101). Lec1 CHO cells lack GlcNAc-TI activity and synthesize only the oligomannosyl class of N-glycans. By contrast, Lec1A CHO mutants have weak GlcNAc-TI activity due to the reduced affinity of GlcNAc-TI for both the UDP-GlcNAc and Man(5)GlcNAc(2)Asn substrates. Lec1A CHO mutants synthesize hybrid and complex N-glycans, albeit in reduced amounts compared to parental CHO cells. In this paper, we identify two point mutations that gave rise to the Lec1A phenotype in three independent Lec1A CHO mutants. The G634A mutation in Lec1A.2C converts an aspartic acid to an asparagine at amino acid 212, disrupting a conserved DXD motif (E(211)DD(213) in all GlcNAc-TIs) that makes critical interactions with bound UDP-GlcNAc and Mn(2+) ion in rabbit GlcNAc-TI. The C907T mutation in Lec1A.3E and Lec1A.5J converts an arginine conserved in all GlcNAc-TIs to a tryptophan at amino acid 303, altering interactions that are important in stabilizing a critical structural element in rabbit GlcNAc-TI. Correction of each mutation by site-directed mutagenesis restored their GlcNAc-TI activity and lectin binding properties to parental levels. The effect of the two amino acid changes on GlcNAc-TI catalysis is discussed in relation to the crystal structure of rabbit GlcNAc-TI complexed with manganese and UDP-GlcNAc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号