首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  2012年   4篇
  2011年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
3.
A mouse spleen-derived mast cell line (PT-18) was employed to examine the mechanisms of adenosine 3':5'-monophosphate (cAMP)-mediated inhibition of antigen-induced lipid mediator biosynthesis. Specifically, we tested the hypothesis that increasing cAMP in mast cells inhibits lipid mediator biosynthesis by a mechanism independent of effects on histamine release (degranulation) or changes in cytosolic calcium concentration. Forskolin inhibited antigen-induced prostaglandin D2 (PGD2), leukotriene C4 (LTC4), and leukotriene B4 (LTB4) production by 30-50%. In contrast, forskolin had no inhibitory effect on antigen-induced increases in cytosolic calcium concentration, as monitored by the calcium indicator fura-2, or histamine release from the cells. The combination of the phosphodiesterase inhibitor isobutylmethylxanthine with forskolin inhibited the antigen-induced production of PGD2 and LTC4 by 90-100% and histamine release by about 60%. These responses were accompanied by a virtual abolition of the antigen-induced increase in cytosolic calcium. To test further the hypothesis that increasing cAMP can lead to inhibition of lipid mediator biosynthesis in the absence of effects on cytosolic calcium, we employed the calcium ionophores A23187 and ionomycin. Forskolin alone or in combination with isobutylmethylxanthine had no effect on ionophore-induced increases in cytosolic calcium but effectively inhibited leukotriene biosynthesis. In addition, increasing cyclic AMP led to an inhibition of ionophore-induced production of platelet-activating factor and liberation of arachidonic acid. These data suggest that a relatively modest increase in cAMP-dependent protein kinase activity in mast cells leads to inhibition of the lipase-catalyzed cleavage of arachidonic acid from membrane phospholipids in the absence of measurable effects on either histamine release or changes in cytosolic calcium concentration. This effect results in a selective inhibition of the biosynthesis of lipid mediators including LTC4, LTB4, PGD2, and platelet-activating factor.  相似文献   
4.
Exposure to chronic hypoxia (CH) causes pulmonary hypertension. The vasoconstrictor endothelin-1 (ET-1) is thought to play a role in the development of hypoxic pulmonary hypertension. In pulmonary arterial smooth muscle cells (PASMCs) from chronically hypoxic rats, ET-1 signaling is altered, with the ET-1-induced change in intracellular calcium concentration (Δ[Ca(2+)](i)) occurring through activation of voltage-dependent Ca(2+) channels (VDCC) even though ET-1-induced depolarization via inhibition of K(+) channels is lost. The mechanism underlying this response is unclear. We hypothesized that activation of VDCCs by ET-1 following CH might be mediated by protein kinase C (PKC) and/or Rho kinase, both of which have been shown to phosphorylate and activate VDCCs. To test this hypothesis, we examined the effects of PKC and Rho kinase inhibitors on the ET-1-induced Δ[Ca(2+)](i) in PASMCs from rats exposed to CH (10% O(2), 3 wk) using the Ca(2+)-sensitive dye fura 2-AM and fluorescent microscopy techniques. We found that staurosporine and GF109203X, inhibitors of PKC, and Y-27632 and HA 1077, Rho kinase inhibitors, reduced the ET-1-induced Δ[Ca(2+)](i) by >70%. Inhibition of tyrosine kinases (TKs) with genistein or tyrphostin A23, or combined inhibition of PKC, TKs, and Rho kinase, reduced the Δ[Ca(2+)](i) to a similar extent as inhibition of either PKC or Rho kinase alone. The ability of PKC or Rho kinase to activate VDCCs in our cells was verified using phorbol 12-myristate 13-acetate and GTP-γ-S. These results suggest that following CH, the ET-1-induced Δ[Ca(2+)](i) in PASMCs occurs via Ca(2+) influx through VDCCs mediated primarily by PKC, TKs, and Rho kinase.  相似文献   
5.
To determine whether hypoxic pulmonary vasoconstriction was associated with release of sulfidopeptide leukotrienes (SPLTs) from the lung, we measured SPLT activity by bioassay (guinea pig ileum) and radioimmunoassay in lymph, perfusate, and bronchoalveolar lavage (BAL) fluid from sheep lungs (n = 20) isolated and perfused in situ with a constant flow of autologous blood (100 ml.kg-1.min-1) containing indomethacin (60 micrograms/ml). The protocol consisted of three periods, each at least 1 h in duration. In experimental lungs, inspired O2 concentration (FIO2) was 28.2% in periods 1 and 3 and 4.2% in period 2. In control lungs, FIO2 was 28.2% throughout. Hypoxia increased pulmonary arterial pressure but did not alter peak tracheal pressure, lung lymph flow, or weight gain measured during the last 30 min of each period. SPLT activity was greatest in lung lymph and least in BAL fluid. Hypoxia did not alter SPLT activity in any fluid. Similar results were obtained in lungs not treated with indomethacin (n = 15). These data do not support the hypothesis that hypoxic pulmonary vasoconstriction is mediated by SPLTs.  相似文献   
6.
Pulmonary arterial smooth muscle cell (PASMC) migration is a key component of the vascular remodeling that occurs during the development of hypoxic pulmonary hypertension, although the mechanisms governing this phenomenon remain poorly understood. Aquaporin-1 (AQP1), an integral membrane water channel protein, has recently been shown to aid in migration of endothelial cells. Since AQP1 is expressed in certain types of vascular smooth muscle, we hypothesized that AQP1 would be expressed in PASMCs and would be required for migration in response to hypoxia. Using PCR and immunoblot techniques, we determined the expression of AQPs in pulmonary vascular smooth muscle and the effect of hypoxia on AQP levels, and we examined the role of AQP1 in hypoxia-induced migration in rat PASMCs using Transwell filter assays. Moreover, since the cytoplasmic tail of AQP1 contains a putative calcium binding site and an increase in intracellular calcium concentration ([Ca(2+)](i)) is a hallmark of hypoxic exposure in PASMCs, we also determined whether the responses were Ca(2+) dependent. Results were compared with those obtained in aortic smooth muscle cells (AoSMCs). We found that although AQP1 was abundant in both PASMCs and AoSMCs, hypoxia selectively increased AQP1 protein levels, [Ca(2+)](i), and migration in PASMCs. Blockade of Ca(2+) entry through voltage-dependent Ca(2+) or nonselective cation channels prevented the hypoxia-induced increase in PASMC [Ca(2+)](i), AQP1 levels, and migration. Silencing AQP1 via siRNA also prevented hypoxia-induced migration of PASMCs. Our results suggest that hypoxia induces a PASMC-specific increase in [Ca(2+)](i) that results in increased AQP1 protein levels and cell migration.  相似文献   
7.
In vitro antigen challenge has multiple effects on the excitability of guinea pig bronchial parasympathetic ganglion neurons, including depolarization, causing phasic neurons to fire with a repetitive action potential pattern and potentiating synaptic transmission. In the present study, guinea pigs were passively sensitized to the antigen ovalbumin. After sensitization, the bronchi were prepared for in vitro electrophysiological intracellular recording of parasympathetic ganglia neurons to investigate the contribution of cyclooxygenase activation and prostanoids on parasympathetic nerve activity. Cyclooxygenase inhibition with either indomethacin or piroxicam before in vitro antigen challenge blocked the change in accommodation. These cyclooxygenase inhibitors also blocked the release of prostaglandin D(2) (PGD(2)) from bronchial tissue during antigen challenge. We also determined that PGE(2) and PGD(2) decreased the duration of the action potential after hyperpolarization, whereas PGF(2alpha) potentiated synaptic transmission. Thus prostaglandins released during antigen challenge have multiple effects on the excitability of guinea pig bronchial parasympathetic ganglia neurons, which may consequently affect the output from these neurons and thereby alter parasympathetic tone in the lower airways.  相似文献   
8.
The induction of action potentials in airway sensory nerves relies on events leading to the opening of cation channels in the nerve terminal membrane and subsequent membrane depolarization. If the membrane depolarization is of sufficient rate and amplitude, action potential initiation will occur. The action potentials are then conducted to the central nervous system, leading to the initiation of various sensations and cardiorespiratory reflexes. Triggering events in airway sensory nerves include mechanical perturbation, inflammatory mediators, pH, temperature, and osmolarity acting through a variety of ionotropic and metabotropic receptors. Action potential initiation can be modulated (positively or negatively) through independent mechanisms caused mainly by autacoids and other metabotropic receptor ligands. Finally, gene expression of sensory nerves can be altered in adult mammals. This neuroplasticity can change the function of sensory nerves and likely involve both neurotrophin and use-dependent mechanisms. Here we provide a brief overview of some of the transduction mechanisms underlying these events.  相似文献   
9.
A series of N-methylbenzamide analogues (2-18) that is structurally derived from SR 48,968, a potent neurokinin-2 (NK(2)) receptor antagonist (pK(b)9.1), has been obtained using asymmetric synthesis. Isothiocyanato-N-methylbenzamide (10-12) and bromoacetamido-N-methylbenzamide derivatives (16-18) have been designed to serve as potential electrophilic affinity labels. Nitro-N-methylbenzamide (4-6) and acetamido-N-methylbenzamide (13-15) were designed to serve as the nonelectrophilic controls for these ligands. Functional assay results using guinea pig trachea indicate that electrophilic N-methylbenzamide analogues exhibit potent but surmountable NK(2) receptor antagonist activity. Several members of this series (2, 3, 7-9) exhibit potent NK(2) receptor antagonist potencies with pK(b) values in the range of 9.1-9.7. para-Fluoro substituted analogue 3 was found to be highly potent with a pK(b) of 9.7.  相似文献   
10.
Several esophageal pathologies are associated with an increased number of mast cells in the esophageal wall. We addressed the hypothesis that activation of esophageal mast cells leads to an increase in the excitability of local sensory C fibers. Guinea pigs were actively sensitized to ovalbumin. The mast cells in the esophagus were selectively activated ex vivo by superfusion with ovalbumin. Action potential discharge in guinea pig vagal nodose esophageal C-fiber nerve endings was monitored in the isolated (ex vivo) vagally innervated esophagus by extracellular recordings. Ovalbumin activated esophageal mast cells, leading to the rapid release of approximately 20% of the tissue histamine stores. This was associated with a consistent and significant increase in excitability of the nodose C fibers as reflected in a two- to threefold increase in action potential discharge frequency evoked by mechanical (increases in intraluminal pressure) stimulation. The increase in excitability persisted unchanged for at least 90 min (longest time period tested) after ovalbumin was washed from the tissue. This effect could be prevented by the histamine H1 receptor antagonist pyrilamine, but once the increase in excitability occurred, it persisted in the nominal absence of histamine and could not be reversed even with large concentrations of the histamine receptor antagonist. In conclusion, activation of esophageal mast cells leads to a pronounced and long-lived increase in nociceptive C-fiber excitability such that any sensation or reflex evoked via the vagal nociceptors will likely be enhanced. The effect is initiated by histamine acting via H1 receptor activation and maintained in the absence of the initiating stimulus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号