首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   6篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1982年   2篇
  1980年   1篇
  1977年   2篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
1.
WhileEscherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains ofE. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. EnterotoxigenicE. coli (ETEC) is the most extensively studied of the five categories ofE. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenicE. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three, additional categories ofE. coli diarrheal disease, their colonization factors and their host cell receptors are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and thatE. coli is part of these biofilms as both commensals and pathogens.Abbreviations CF colonization factor - CFA Colonization Factor Antigen - CS coli-surface-associated antigen - EAggEC enteroaggregativeE. coli - ECDD E. coli diarrheal disease - EHEC enterohemorrhagicE. coli - EIEC enteroinvasiveE. coli - EPEC enteropathogenicE. coli - ETEC enterotoxigenicE. coli - Gal galactose - GalNAc N-acetyl galactosamine - LT heat-labile toxin - NeuAc N-acetyl neuraminic acid - PCF Putative colonization factor - RBC red blood cells - SLT Shiga-like toxin - ST heat-stable toxin  相似文献   
2.
Molecular drift of the bride of sevenless (boss) gene in Drosophila   总被引:6,自引:1,他引:5  
DNA sequences were determined for three to five alleles of the bride-of- sevenless (boss) gene in each of four species of Drosophila. The product of boss is a transmembrane receptor for a ligand coded by the sevenless gene that triggers differentiation of the R7 photoreceptor cell in the compound eye. Population parameters affecting the rate and pattern of molecular evolution of boss were estimated from the multinomial configurations of nucleotide polymorphisms of synonymous codons. The time of divergence between D. melanogaster and D. simulans was estimated as approximately 1 Myr, that between D. teissieri and D. yakuba as approximately 0.75 Myr, and that between the two pairs of sibling species as approximately 2 Myr. (The boss genes themselves have estimated divergence times approximately 50% greater than the species divergence times.) The effective size of the species was estimated as approximately 5 x 10(6), and the average mutation rate was estimated as 1-2 x 10(-9)/nucleotide/generation. The ratio of amino acid polymorphisms within species to fixed differences between species suggests that approximately 25% of all possible single-step amino acid replacements in the boss gene product may be selectively neutral or nearly neutral. The data also imply that random genetic drift has been responsible for virtually all of the observed differences in the portion of the boss gene analyzed among the four species.   相似文献   
3.
We have analyzed the conserved regions of the gene coding for the circumsporozoite protein (CSP) in 12 species of Plasmodium, the malaria parasite. The closest evolutionary relative of P. falciparum, the agent of malignant human malaria, is P. reichenowi, a chimpanzee parasite. This is consistent with the hypothesis that P. falciparum is an ancient human parasite, associated with humans since the divergence of the hominids from their closest hominoid relatives. Three other human Plasmodium species are each genetically indistinguishable from species parasitic to nonhuman primates; that is, for the DNA sequences included in our analysis, the differences between species are not greater than the differences between strains of the human species. The human P. malariae is indistinguishable from P. brasilianum, and P. vivax is indistinguishable from P. simium; P. brasilianum and P. simium are parasitic to New World monkeys. The human P. vivax-like is indistinguishable from P. simiovale, a parasite of Old World macaques. We conjecture that P. malariae, P. vivax, and P. vivax-like are evolutionarily recent human parasites, the first two at least acquired only within the last several thousand years, and perhaps within the last few hundred years, after the expansion of human populations in South America following the European colonizations. We estimate the rate of evolution of the conserved regions of the CSP gene as 2.46 x 10(-9) per site per year. The divergence between the P. falciparum and P. reichenowi lineages is accordingly dated 8.9 Myr ago. The divergence between the three lineages leading to the human parasites is very ancient, about 100 Myr old between P. malariae and P. vivax (and P. vivax-like) and about 165 Myr old between P. falciparum and the other two.   相似文献   
4.
Oligomeric forms of the acetylcholine receptor are directly visualized by electron microscopy in receptor-rich membranes from torpedo marmorata. The receptor structures are quantitatively correlated with the molecular species so far identified only after detergent solubilization, and further related to the polypeptide composition of the membranes and changes thereof. The structural identification is made possibly by the increased fragility of the membranes after extraction of nonreceptor peptides and their subsequent disruption upon drying onto hydrophilic carbon supports. Receptor particles in native membranes depleted of nonreceptor peptides appear as single units of 7-8 nm, and double and multiple aggregates thereof. Particle doublets having a main-axis diameter of 19 +/- 3 nm predominate in these membranes. Linear aggregates of particles similar to those observed in rotary replicas of quick-frozen fresh electrolytes (Heuser, J.E. and S. R. Salpeter. 1979, J. Cell Biol. 82: 150-173) are also present in the alkaline-extracted membranes. Chemical modifications of the thiol groups shift the distribution of structural species. Dithiothreitol reduction, which renders almost exclusively the 9S, monomeric receptor form, results in the observation of the 7-8 nm particle in isolated form. The proportion of doublets increases in membranes alkylated with N-ethylmaleimide. Treatment with 5,5’-dithiobis-(nitrobenzoic acid) increases the proportion of higher oligomeric species, and particle aggregates (n=oligo) predominate. The nonreceptor v-peptide (doublet of M(r) 43,000) appears to play a role in the receptor monomer-polymer equilibria. Receptor protein and v-peptide co-aggregate upon reduction and reoxidation of native membranes. In membranes protected ab initio with N- ethylmaleimide, only the receptor appears to self-aggregate. The v-peptide cannot be extracted from these alkylated membranes, though it is easily released from normal, subsequently alkylated or reduced membranes. A stabilization of the dimeric species by the nonreceptor v-peptide is suggested by these experiments. Monospecific antibodies against the v-peptide are used in conjunction with rhodamine- labeled anti-bodies in an indirect immunoflourescence assay to map the vectorial exposure of the v-peptide. When intact membranes, v-peptide depleted and “holey” native membranes (treated with 0.3 percent saponin) are compared, maximal labeling is obtained with the latter type of membranes, suggesting a predominantly cytoplasmic exposure of the antigenic determinants of the v-peptide in the membrane. The influence of the v-peptide in the thiol-dependent interconversions of the receptor protein and the putative topography of the peptide are analyzed in the light of the present results.  相似文献   
5.
Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L−1) or elevated (800 μmol mol−1) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus. Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature events changes, this is unlikely to increase risk of freezing damage in P. strobus seedlings.Land surface temperature is increasing, particularly in the northern hemisphere (IPCC, 2014), which is dominated by boreal and temperate forests. At higher latitudes, trees rely on temperature and photoperiod cues to detect changing seasons and to trigger cessation of growth and cold hardening during the autumn (Ensminger et al., 2015). For boreal and temperate evergreen conifers, cold hardening involves changes in carbohydrate metabolism, down-regulation of photosynthesis, accumulation of cryoprotective metabolites, and development of freezing tolerance (Crosatti et al., 2013; Ensminger et al., 2015). These processes minimize freezing damage and enable conifers to endure winter stresses. However, rising temperatures result in asynchronous phasing of temperature and photoperiod characterized by delayed arrival of first frosts (McMahon et al., 2010), which may impact the onset and development of cold hardening during autumn.Short photoperiod induces the cessation of growth in many tree species (Downs and Borthwick, 1956; Heide, 1974; Repo et al., 2000; Böhlenius et al., 2006). As a consequence, carbon demand in sink tissue decreases toward the end of the growing season, and the bulk of photoassimilate is translocated from source tissues to storage tissues (Hansen and Beck, 1994; Oleksyn et al., 2000). In addition, cryoprotective soluble sugars, including sucrose, raffinose, and pinitol, accumulate in leaf tissues to enhance freezing tolerance (Strimbeck et al., 2008; Angelcheva et al., 2014). Thus, by winter, leaf nonstructural carbohydrates are mainly comprised of mono- and oligosaccharides, and only minimal levels of starch remain (Hansen and Beck, 1994; Strimbeck et al., 2008). The concurrent decrease of photoassimilate and demand for metabolites that occur during the cessation of growth also impacts the citric acid cycle that mediates between photosynthesis, respiration, and protein synthesis. The citric acid cycle generates NADH to fuel ATP synthesis via mitochondrial electron transport, as well as amino acid precursors (Shi et al., 2015). In C3 plants, the enzyme phosphoenolpyruvate carboxylase (PEPC) converts phosphoenolpyruvate to oxaloacetic acid in order to supplement the flow of metabolites to the citric acid cycle and thus controls the regulation of respiration and photosynthate partitioning (O’Leary et al., 2011).Cessation of growth, low temperature, and presumably short photoperiod decrease the metabolic sink for photoassimilates, resulting in harmful excess light energy (Öquist and Huner, 2003; Ensminger et al., 2006) and increased generation of reactive oxygen species (Adams et al., 2004). During autumn and the development of cold hardiness, conifers reconfigure the photosynthetic apparatus in order to avoid formation of excess light and reactive oxygen species. This involves a decrease in chlorophylls and PSII reaction center core protein D1 (Ottander et al., 1995; Ensminger et al., 2004; Verhoeven et al., 2009), as well as aggregation of light-harvesting complex proteins (Ottander et al., 1995; Busch et al., 2007). Additionally, photoprotective carotenoid pigments accumulate in leaves, especially the xanthophylls, zeaxanthin, and lutein that contribute to nonphotochemical quenching (NPQ) via thermal dissipation of excess light energy (Busch et al., 2007; Verhoeven et al., 2009; Demmig-Adams et al., 2012). Prolonged exposure to low temperature induces sustained nonphotochemical quenching (NPQS), where zeaxanthin constitutively dissipates excess light energy (Ensminger et al., 2004; Demmig-Adams et al., 2012; Fréchette et al., 2015).In conifers, freezing tolerance is initiated during early autumn in response to decreasing photoperiod (Rostad et al., 2006; Chang et al., 2015) and continues to develop through late autumn in response to the combination of short photoperiod and low temperature (Strimbeck and Schaberg, 2009; Chang et al., 2015). In addition to changes in carbohydrate content, freezing tolerance also involves the expression of specific dehydrins (Close, 1997; Kjellsen et al., 2013). Members of the dehydrin protein family are involved in responses to osmotic, salt, and freezing stress (Close, 1996). Dehydrins have been associated with improved freezing tolerance in many species including spinach (Kaye et al., 1998), strawberry (Houde et al., 2004), cucumber (Yin et al., 2006), peach (Wisniewski et al., 1999), birch (Puhakainen et al., 2004), and spruce (Kjellsen et al., 2013). In angiosperms, a characteristic Lys-rich dehydrin motif known as the K-segment interacts with lipids to facilitate membrane binding (Koag et al., 2003; Eriksson et al., 2011). Several in vitro studies have demonstrated dehydrin functions including prevention of aggregation and unfolding of enzymes (using Vitis riparia; Hughes and Graether, 2011), radical scavenging (using Citrus unshiu; Hara et al., 2004), and suppression of ice crystal formation (using Prunus persica; Wisniewski et al., 1999). To date, dehydrin functions have not been demonstrated in planta.Rising temperatures since the mid-twentieth century have delayed the onset of autumn dormancy and increased length of the growing season in forests across the northern hemisphere (Boisvenue and Running, 2006; Piao et al., 2007; McMahon et al., 2010). Studies have shown that elevated temperatures ranging from +4°C to +20°C above ambient can delay down-regulation of photosynthesis in several evergreen conifers. Consistent findings were apparent among climate-controlled chamber studies exposing Pinus strobus seedlings to a sudden shift in temperature and/or photoperiod (Fréchette et al., 2016), as well as chamber studies exposing Picea abies seedlings to simulated autumn conditions using a gradient of decreasing temperature and photoperiod (Stinziano et al., 2015). Similar findings were also demonstrated in open-top chamber experiments exposing mature Pinus sylvestris to a gradient of decreasing temperature and natural photoperiod (Wang, 1996). Elevated temperature (+4°C above ambient) also impaired cold hardening in Pseudotsuga menziesii seedlings (Guak et al., 1998) and mature P. sylvestris (Repo et al., 1996) exposed to a decreasing gradient of temperature and natural photoperiod using open-top chambers. In contrast, a recent study showed that smaller temperature increments (+1.5°C to +3°C) applied using infrared heaters did not delay down-regulation of photosynthesis or impair freezing tolerance in field-grown P. strobus seedlings that were acclimated to larger diurnal and seasonal temperature variations (Chang et al., 2015). For many tree species, photoperiod determines cessation of growth (Tanino et al., 2010; Petterle et al., 2013), length of the growing season (Bauerle et al., 2012), and development of cold hardiness (Welling et al., 1997; Li et al., 2003; Rostad et al., 2006). However, the effects of climate warming on tree phenology are complex and can be unpredictable due to species- and provenance-specific differences in sensitivity to photoperiod and temperature cues (Körner and Basler, 2010; Basler and Körner, 2012; Basler and Körner, 2014).The effect of elevated CO2 further increases uncertainties in the response of trees to warmer climate. Similar to warmer temperature, elevated CO2 may also delay the down-regulation of photosynthesis in evergreens and extend the length of the growing season, as demonstrated in mature P. sylvestris (Wang, 1996). Elevated CO2 increases carbon assimilation (Curtis and Wang, 1998; Ainsworth and Long, 2005) and biomass production (Ainsworth and Long, 2005) during the growing season. The effects could continue during the autumn if dormancy or growth cessation is delayed, which suggests that elevated CO2 may increase annual carbon uptake. However, long-term exposure to elevated CO2 can also down-regulate photosynthesis during the growing season (Ainsworth and Long, 2005). Prior studies that have attempted to determine the impact of a combination of elevated CO2 and/or temperature on cold hardening in evergreens have largely focused on freezing tolerance, with contrasting results. Open-top chamber experiments showed that a combination of elevated temperature and CO2 both delayed and impaired freezing tolerance of P. menziesii seedlings (Guak et al., 1998) and evergreen broadleaf Eucalyptus pauciflora seedlings (Loveys et al., 2006) but did not affect freezing tolerance of mature P. sylvestris (Repo et al., 1996). A recent field experiment examining mature trees revealed that Larix decidua, but not Pinus mugo, exhibited enhanced freezing damage following six years of exposure to combined soil warming and elevated CO2 (Rixen et al., 2012). In contrast, a climate-controlled study showed that exposure to elevated CO2 advanced the date of bud set and improved freezing tolerance in Picea mariana seedlings (Bigras and Bertrand, 2006). In a second study on similar seedlings conducted by the same authors, exposure of trees to elevated CO2 also enhanced freezing tolerance but impaired the accumulation of sucrose and raffinose (Bertrand and Bigras, 2006). These previous experiments used experimental conditions where temperature and photoperiod gradually decreased. While this approach aims to mimic natural conditions, it is difficult to distinguish specific responses to either photoperiod or temperature. Because of the contrasting findings from previous studies, we designed an experiment aiming to separate the effects of photoperiod, temperature, and CO2 on a wide range of parameters that are involved in cold hardening in conifers.Our study aimed to determine (1) how induction and development of the cold hardening process is affected by a shift from long to short photoperiod under warm conditions and (2) how the combination of warm air temperature and elevated CO2 affects photoperiod-induced cold hardening processes in Eastern white pine (P. strobus). To assess the development of cold hardening, we measured photosynthetic rates, changes in leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening over 36 d. Assuming that both low temperature and short photoperiod cues are required to induce cold hardening in conifers, we hypothesized that warm temperature and the combination of warm temperature and elevated CO2 would prevent seedlings growing under autumn photoperiod from down-regulating photosynthesis. We further hypothesized that warm temperature and the combination of warm temperature and elevated CO2 would impair the development of freezing tolerance, due to a lack of adequate phasing of the low temperature and short photoperiod signals.  相似文献   
6.
BACKGROUND: The symptom triad of autosomal dominant Currarino syndrome (CS; MIM #176450) consists of anorectal malformation, a sacral bone defect, and presacral masses. Mutations in the homeoboxHLXB9 gene have already been described in a subset of sacrococcygeal anomalies characterized by partial sacral agenesis. CASE: We report a 28-year-old male patient with Currarino syndrome due to a heterozygous novel frame-shift mutation c.336dupG (p.P113fsX224) in the homeoboxHLXB9 gene. CONCLUSIONS: Molecular diagnostics may be helpful in cases of Hirschsprung's disease accompanied by other symptoms suggestive for Currarino syndrome, since it can lead to major complications such as perianal sepsis, meningitis, and malignant transformation.  相似文献   
7.
Cell walls are vital to the normal growth and development of plants as they protect the protoplast and provide rigidity to the stem. Here, two poplar and Arabidopsis orthologous endoglucanases, which have been proposed to play a role in secondary cell wall development, were examined. The class B endoglucanases, Pt GH9B5 and At GH9B5, are secreted enzymes that have a predicted glycosylphosphatidylinositol anchor, while the class C endoglucanases, Pt GH9C2 and At GH9C2, are also predicted to be secreted but instead contain a carbohydrate-binding module.The poplar endoglucanases were expressed in Arabidopsis using both a 35 S promoter and the Arabidopsis secondary cell wall-specific Ces A8 promoter. Additionally, Arabidopsis t-DNA insertion lines and an RNAiconstruct was created to downregulate At GH9C2 in Arabidopsis. All of the plant lines were examined for changes in cell morphology and patterning, growth and development, cell wall crystallinity, micro fibril angle, and proportion of cell wall carbohydrates. Misregulation of Pt GH9B5/At GH9B5 resulted in changes in xylose content, while misregulation of Pt GH9C2/At GH9C2 resulted in changes in crystallinity, which was inversely correlated with changes in plant height and rosette diameter. Together, these results suggest that these endoglucanases affect secondary cell wall development by contributing to the cell wall crystallization process.  相似文献   
8.
Retinal pigment epithelial (RPE) cells secrete vascular endothelial growth factor (VEGF), a cytokine known to promote angiogenesis. Results from RNase protection assays (RPAs) show that RPE from non-diabetic human donors and from adult retinal pigment epithelium-19 (ARPE-19) cells expressed significant bone morphogenetic protein-4 (BMP-4) message. In addition, ARPE-19 cells cultured in high glucose (25 mM), compared to those in physiological glucose (5.5 mM) released significantly more BMP-4 into the conditioned media (CM). However, the effect of BMP-4 on the release of VEGF by ARPE-19 cells has not been studied. Accordingly, ARPE-19 cells were treated with BMP-4 to determine VEGF secretion. BMP-4 and VEGF levels in the CM and cell lysates were measured by enzyme-linked immunosorbent assay (ELISA). Cells treated with exogenous BMP-4 had higher VEGF in the CM and this treatment effect was dose- and time-dependent, while cell lysates had low levels of VEGF. Addition of cycloheximide (CHX) or actinomycin-D (ACT) significantly reduced VEGF secretion from cells treated with BMP-4, suggesting that the BMP-4-induced secretion of VEGF requires new RNA and protein synthesis. Our results suggest that BMP-4 may play a role in the regulation of ocular angiogenesis associated with diabetic retinopathy (DR) by stimulating VEGF release from RPE cells.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号